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(R15A0512) COMPILER DESIGN 

 
OBJECTIVES: - 

 To provide an initial Understanding of language translators, Knowledge of various 

techniques used in compiler construction and also use of the automated tools available in 

compilers construction. 

 

UNIT – I: 

Language Translation: Basics, Necessity, Steps involved in atypical language processing system, 

Types of translators, Compilers: Overview and Phases of a Compiler, Pass and Phases of 

translation, bootstrapping, data structures in compilation 

 

Lexical Analysis (Scanning): Functions of Lexical Analyzer, Specification of tokens: Regular 

expressions and Regular grammars for common PL constructs. Recognition of Tokens: Finite 

Automata in recognition and generation of tokens. Scanner generators: LEX-Lexical Analyzer 

Generators. Syntax Analysis (Parsing) : Functions of a parser, Classification of parsers. Context 

free grammars in syntax specification, benefits and usage in compilers. 

 

UNIT – II: 

Top down parsing –Definition, types of top down parsers: Backtracking, Recursive descent, 

Predictive, LL (1), Preprocessing the grammars to be used in top down parsing, Error recovery, 

and Limitations. Bottom up parsing: Definition, types of bottom up parsing, Handle pruning. 

Shift Reduce parsing, LR parsers: LR(0), SLR, CALR and LALR parsing, Error recovery, 

Handling ambiguous grammar, Parser generators: YACC-yet another compiler compiler. 

. 

UNIT – III: 

Semantic analysis: Attributed grammars, Syntax directed definition and Translation schemes, 

Type checker: functions, type expressions, type systems, types of checking of various constructs. 

Intermediate Code Generation: Functions, different intermediate code forms- syntax tree, DAG, 

Polish notation, and Three address codes. Translation of different source language constructs into 

intermediate code. 

Symbol Tables: Definition, contents, and formats to represent names in a Symbol table. Different 

approaches used in the symbol table implementation for block structured and non block 

structured languages, such as Linear Lists, Self Organized Lists, and Binary trees, Hashing based 

STs. 

 

UNIT – IV: 

Runtime Environment: Introduction, Activation Trees, Activation Records, Control stacks. 

Runtime storage organization: Static, Stack and Heap storage allocation. Storage allocation for 

arrays, strings, and records etc. 

Code optimization: goals and Considerations for Optimization, Scope of Optimization: Local 

optimizations, DAGs, Loop optimization, Global Optimizations. Common optimization 

techniques: Folding, Copy propagation, Common Sub expression eliminations, Code motion, 

Frequency     reduction,     Strength    reduction     etc. . 

UNIT – V: 
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Control flow and Data flow analysis: Flow graphs, Data flow equations, global optimization: 

Redundant sub expression elimination, Induction variable eliminations, Live Variable analysis. 

Object code generation: Object code forms, machine dependent code optimization, register 

allocation and assignment generic code generation algorithms, DAG for register allocation. 

 
 

TEXT BOOKS: 

1. Compilers, Principle, Techniques, and Tools. – Alfred.V Aho, Monica S.Lam, Ravi 

Sethi, Jeffrey D. Ullman ; 2nd Edition, Pearson Education. 

2. Modern Compiler implementation in C , - Andrew N.Appel Cambridge University Press. 

 

REFERENCES: 

1. lex & yacc , -John R Levine, Tony Mason, Doug Brown; O’reilly. 

2. Compiler Construction,- LOUDEN, Thomson. 

3. Engineering a compiler – Cooper & Linda, Elsevier 

4. Modern Compiler Design – Dick Grune, Henry E.Bal, Cariel TH Jacobs, Wiley 

Dreatech 

 

OUTCOMES: By the end of the semester, the student will be able to: 

 Understand the necessity and types of different language translators in use. 

 Apply the techniques and design different components (phases) of a compiler by hand. 

 Solve problems, Write Algorithms, Programs and test them for the results. 

 Use the tools Lex, Yacc in compiler construction. 
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UNIT-1 

LANGUAGE TRANSLATION 

 

1. OVERVIEW OF LANGUAGE PROCESSING SYSTEM 
 

Preprocessor 
A preprocessor produce input to compilers. They may perform the following functions. 

1. Macro processing: A preprocessor may allow a user to define macros that are 
short hands for longer constructs. 

2. File inclusion: A preprocessor may include header files into the program text. 

3. Rational preprocessor: these preprocessors augment older languages with 
more modern flow-of-control and data structuring facilities. 

4. Language Extensions: These preprocessor attempts to add capabilities to the 
language by certain amounts to build-in macro 

 

Compiler 

Compiler is a translator program that translates a program written in (HLL) the 

source program and translates it into an equivalent program in (MLL) the target 

program. As an important part of a compiler is error showing to the programmer. 
 

 

Source pg 
 

 

 

 
 

Compiler 
target pgm 

 

 

 

 

Error msg 
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Executing a program written n HLL programming language is basically of two parts. the source 
program must first be compiled translated into a object program. Then the results object program is 
loaded into a memory executed. 

 
ASSEMBLER: programmers found it difficult to write or read programs in machine 
language. They begin to use a mnemonic (symbols) for each machine instruction, which they 
would subsequently translate into machine language. Such a mnemonic machine language is 
now called an assembly language. Programs known as assembler were written to automate the 
translation of assembly language in to machine language. The input to an assembler program 
is called source program, the output is a machine language translation (object program). 

 
INTERPRETER: An interpreter is a program that appears to execute a source program as if it 

were machine language. 
 

 
Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also uses 
interpreter. The process of interpretation can be carried out in following phases. 
1. Lexical analysis 

2. Syntax analysis 

3. Semantic analysis 

4. Direct Execution 

 
Advantages: 

 
o Modification of user program can be easily made and implemented as execution proceeds. 
o Type of object that denotes various may change dynamically. 

o Debugging a program and finding errors is simplified task for a program used for                        interpretation. 
o The interpreter for the language makes it machine independent. 

Disadvantages: 

 
 The execution of theprogramis slower.  

 Memory consumption is more. 
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Loader and Link-editor: 

Once the assembler procedures an object program, that program must be p laced into 
memory and executed. The assembler could place the object program directly in memory and 
transfer control to it, thereby causing the machine language program to be execute. This would 
waste core by leaving the assembler in memory while the user’s program was being executed. Also 
the programmer would have to retranslate his program with each execution, thus wasting translation 
time. To overcome this problems of wasted translation time and memory. System programmers 
developed another component called loader. 

 

“A loader is a program that places programs into memory and prepares them for execution.” 
It would be more efficient if subroutines could be translated into object form the loader could 
”relocate” directly behind the user’s program. The task of adjusting programs o they may be 
placed in arbitrary core locations is called relocation. Relocation loaders perform four functions. 

 
 

TRANSLATOR 

 
A translator is a program that takes as input a program written in one language and produces 

as output a program in another language. Beside program translation, the translator performs another 

very important role, the error-detection. Any violation of d HLL specification would be detected and 

reported to the programmers. Important role of translator are: 

 
1. Translating the hll program input into an equivalent ml program. 

2. Providing diagnostic messages wherever the programmer violates specification of 

 

TYPE OF TRANSLATORS:- 

 Interpreter 

 Compiler 

 preprocessor 

 
LIST OF COMPILERS 

 
1. Ada compilers 

2. ALGOL compilers 

3. BASIC compilers 

4. C# compilers 

5. C compilers 

6. C++ compilers 

7. COBOL compilers 

8. Java compilers 
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2. PHASES OF A COMPILER: 

 
A compiler operates in phases. A phase is a logically interrelated operation that takes source 
program in one representation and produces output in another representation. The phases of a 
compiler are shown in below 
There are two phases of compilation. 

a. Analysis (Machine Independent/Language Dependent) 

b. Synthesis (Machine Dependent/Language independent) Compilation process is partitioned 
into no-of-sub processes called ‘phases’. 

 

Lexical Analysis:- 

LA or Scanners reads the source program one character at a time, carving the source 
program into a sequence of automatic units called tokens. 

 

Syntax Analysis:- 

The second stage of translation is called syntax analysis or parsing. In this phase 
expressions, statements, declarations etc… are identified by using the results of lexical analysis. 
Syntax analysis is aided by using techniques based on formal grammar of the programming language. 
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Intermediate Code Generations:- 

An intermediate representation of the final machine language code is produced. This 
phase bridges the analysis and synthesis phases of translation. 

 

Code Optimization:- 

This is optional phase described to improve the intermediate code so that the output 
runs faster and takes less space. 

 

Code Generation:- 

The last phase of translation is code generation. A number of optimizations to 

Reduce the length of machine language program are carried out during this phase. The output of 
the code generator is the machine language program of the specified computer. 

 

Table Management (or) Book-keeping:- 

This is the portion to keep the names used by the program and records essential 
information about each. The data structure used to record this information called a 

‘Symbol Table’. 

 

Error Handlers:- 

It is invoked when a flaw error in the source program is detected. The output of LA is a 
stream of tokens, which is passed to the next phase, the syntax analyzer or parser. The SA groups the 
tokens together into syntactic structure called as expression. Expression may further be combined to 
form statements. The syntactic structure can be regarded as a tree whose leaves are the token called as 
parse trees. 

 
The parser has two functions. It checks if the tokens from lexical analyzer, occur in pattern that are 
permitted by the specification for the source language. It also imposes on tokens a tree-like structure 
that is used by the sub-sequent phases of the compiler. 

 
Example, if a program contains the expression A+/B after lexical analysis this expression might 
appear to the syntax analyzer as the token sequence id+/id. On seeing the /, the syntax analyzer 
should detect an error situation, because the presence of these two adjacent binary operators violates 
the formulations rule of an expression. 

 

Syntax analysis is to make explicit the hierarchical structure of the incoming token stream by 

identifying which parts of the token stream should be grouped. 
 

Example, (A/B*C has two possible interpretations.) 

1- divide A by B and then multiply by Cor 

2- multiply B by C and then use the result to divide A. 

Each of these two interpretations can be represented in terms of a parse tree. 

Intermediate Code Generation:- 

The intermediate code generation uses the structure produced by the syntax analyzer to 
create a stream of simple instructions. Many styles of intermediate code are 
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possible. One common style uses instruction with one operator and a small number of operands.The 
output of the syntax analyzer is some representation of a parse tree. The intermediate code generation 
phase transforms this parse tree into an intermediate language representation of the source program. 

 

Code Optimization:- 

This is optional phase described to improve the intermediate code so that the output runs 
faster and takes less space. Its output is another intermediate code program that does the same job as 
the original, but in a way that saves time and / or spaces. 

/* 1, Local Optimization:- 

There are local transformations that can be applied to a 
program to make an improvement. For example, 

If A > B goto L2 

Goto L3 L2 : 

This can be replaced by a single statement If A < B goto L3 

Another important local optimization is the elimination of common 

sub-expressions  

 A := B + C + D  

 E := B + C + F  

Might be evaluated as  

T1 := B + C  

A := T1 + D  

E := T1 + F  

Take this advantage of the common sub-expressions B + C. 

Loop Optimization:- 

Another important source of optimization concerns about increasing the speed of 

loops. A typical loop improvement is to move a computation that produces the same result each time 

around the loop to a point, in the program just before the loop is entered.*/ 

 

Code generator :- 

C produces the object code by deciding on the memory locations for data, selecting code 

to access each data and selecting the registers in which each computation is to be done. Many 

computers have only a few high speed registers in which computations can be performed quickly. A 

good code generator would attempt to utilize registers as efficiently as possible. 
 

Error Handing :- 

One of the most important functions of a compiler is the detection and reporting of 

errors in the source program. The error message should allow the programmer to determine exactly 

where the errors have occurred. Errors may occur in all or the phases of a compiler. 
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id3 

 
 

Intermediate Code Generator 

 

Whenever a phase of the compiler discovers an error, it must report the error to the error 
handler, which issues an appropriate diagnostic msg. Both of the table-management and error- 
Handling routines interact with all phases of the compiler. 

 

Example: 

 
position:= initial + rate *60 

 

 

Lexical Analyzer 

 

 
Tokens id1 = id2 + id3 * id4 

 
id1 + 

 

 

 

 

 
 

Semantic Analyzer 

 

= 

id1 

id2 

 

 

 

 

 

 

 

 

 

 

 

id4 

 

 

 

 

 

 

 

 

 

 

 

 
int to real 

 

 

 

 

temp1:= int to real (60) temp2:= id3 * temp1 temp3:= id2 + temp2 

id1:= temp3. 

 

Syntsx Analyzer 

 
= 

id2 * 

id3 
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Code Generator 

 
 

 

Temp1: = id3 * 60.0 

Id1:= id2 +temp1 

 

 

 

 

 

 

 

Lexical Analyzer: 

 
The LA is the first phase of a compiler. Lexical analysis is called as linear analysis or scanning. In 

this phase the stream of characters making up the source program is read from left-to-right and 

grouped into tokens that are sequences of characters having a collective meaning. 
 

 

 

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer 

 
 

reads the input character until it can identify the next token. The LA return to the parser 
representation for the token it has found. The representation will be an integer code, if the token is a 
simple construct such as parenthesis, comma or colon. 

 
LA may also perform certain secondary tasks as the user interface. One such task is striping 

out from the source program the commands and white spaces in the form of blank, tab and new line 
characters. Another is correlating error message from the compiler with the source program. 

 
 

Code Optimizer 
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Lexical Analysis Vs Parsing: 

 

Lexical analysis Parsing 

A Scanner simply turns an input String (say a file) 

into a list of tokens. These tokens repr 
things like identifiers, parentheses, operators etc. 

A parser converts this list of tokens into a 
like object to represent how the toke 
together to form a cohesive 
(sometimes referred to as a sentence). 

The lexical analyzer (the "lexer") p 

individual symbols from the source code file into 

tokens. From there, the "parser" proper turns those 

whole tokens into sentences of your grammar 

 

A parser does  not give the  nodes 

meaning beyond structural  cohesion. The 

thing to do is extract meaning from this structure 
(sometimes called conte 

analysis). 

 
Token, Lexeme, Pattern: 

 
Token: Token is a sequence of characters that can be treated as a single logical entity. Typical 
tokens are, 

1) Identifiers 2) keywords 3) operators 4) special symbols 5) constants 

 
Pattern: A set of strings in the input for which the same token is produced as output. This set of 
strings is described by a rule called a pattern associated with the token. 

Lexeme: A lexeme is a sequence of characters in the source program that is matched by the pattern 
for a token. 
Example: 

Description of token 
 

Token lexeme pattern 

const const const 

if if If 

 

relation <,<=,= ,< >,>=,> < or <= or = or < > or >= or letter 

followed by letters & digit 

i pi any numeric constant 

nun 3.14 any character b/w “and “except" 

literal "core" pattern 

 
 

A pattern is a rule describing the set of lexemes that can represent a particular token in source 
program. 
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Lexical Errors: 

 
Lexical errors are the errors thrown by the lexer when unable to continue. Which means that 

there’s no way to recognise a lexeme as a valid token for you lexer? Syntax errors, on the other side, 
will be thrown by your scanner when a given set of already recognized valid tokens don't match any 
of the right sides of your grammar rules. Simple panic-mode error handling system requires that we 
return to a high-level parsing function when a parsing or lexical error is detected. 

 

Error-recovery actions are: 

Delete one character from the remaining input. 

Insert a missing character in to the remaining input. 

Replace a character by another character. 

Transpose two adjacent characters. 

 

Difference Between Compiler And Interpreter: 

1 .A compiler converts the high level instruction into machine language while an interpreter 

converts 

the high level instruction into an intermediate form. 

2. Before execution, entire program is executed by the compiler whereas after translating the first 

line, an interpreter then executes it and so on. 

3. List of errors is created by the compiler after the compilation process while an interpreter stops 

translating after the first error. 

4. An independent executable file is created by the compiler whereas interpreter is required by an 

interpreted program each time. 

5. The compiler produce object code whereas interpreter does not produce object code. 

6. In the process of compilation the program is analyzed only once and then the code is generated 

Whereas source program is interpreted every time it is to be executed and every time the source 

program is analyzed. Hence interpreter is less efficient than compiler. 

7. Examples of interpreter: A UPS Debugger is basically a graphical source level debugger but it 

contains built in C interpreter which can handle multiple source file 

Example of compiler: Borland c compiler or Turbo C compiler compiles the programs written in C 

or C++. 

3. REGULAR EXPRESSIONS: 

SPECIFICATION OF TOKENS 

There are 3 specifications of tokens: 
1) Strings 

2) Language 

3) Regular expression 
 

Strings and Languages 
 

An alphabet or character class is a finite set of symbols. 

A string over an alphabet is a finite sequence of symbols drawn from that alphabet. A language is any 
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countable set of strings over some fixed alphabet. 

 
In language theory, the terms "sentence" and "word" are often used as synonyms for "string." 

The length of a string s, usually written |s|, is the number of occurrences of symbols in s. 

For example, banana is a string of length six. The empty string, denoted ε, is the string of length zero. 
 

Operations on strings 

The following string-related terms are commonly used: 

 
1. A prefix of string s is any string obtained by removing zero or more symbols from the end of 

strings. 
For example, ban is a prefix of banana. 

 
2. A suffix of string s is any string obtained by removing zero or more symbols from the beginning 

For example, nana is a suffix of banana. 

 

3. A substring of s is obtained by deleting any prefix and any suffix from s. 

For example, nan is a substring of banana. 

 

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes, suffixes, and 
substrings, respectively of s that are not ε or not equal to s itself. 

 
5. A subsequence of s is any string formed by deleting zero or more not necessarily consecutive 

positions of s 

 

For example, baan is a subsequence of banana. 

 
 

Operations on languages: 
The following are the operations that can be applied to languages: 
1. Union 
2. Concatenation 
3. Kleene closure 

4.Positive closure 

The following example shows the operations on strings: 

Let L={0,1} and S={a,b,c} 
Union : L U S={0,1,a,b,c} 
Concatenation : L.S={0a,1a,0b,1b,0c,1c} 

Kleene closure : L
*
={ ε,0,1,00….} 

Positive closure : L
+
={0,1,00….} 
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Regular Expressions: 

 

Each regular expression r denotes a language L(r). 
Here are the rules that define the regular expressions over some alphabet Σ and the languages that those 
expressions denote: 

 
1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole member is the empty 

string. 

 
2. If‘a’is a symbol in Σ, then ‘a’is a regular expression, and L(a) = {a}, that is, the language with one 

string, of length one, with ‘a’in its one position. 

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then, 

 
o (r)|(s) is a regular expression denoting the language L(r) U L(s). o (r)(s) is a regular 
expression denoting the language L(r)L(s). 

o (r)* is a regular expression denoting (L(r))*. 

o (r) is a regular expression denoting L(r). 

4. The unary operator * has highest precedence and is left associative. 

 
5. Concatenation has second highest precedence and is left associative. has lowest precedence and is 

left associative. 

 

REGULAR DEFINITIONS: 

For notational convenience, we may wish to give names to regular expressions and to define 
regular expressions using these names as if they were symbols. 

Identifiers are the set or string of letters and digits beginning with a letter. The following 
regular definition provides a precise specification for this class of string. 
Example-1, 

Ab*|cd? Is equivalent to (a(b*)) | (c(d?)) Pascal identifier 
Letter - A | B | ……| Z | a | b |……| z| Digits - 0 | 1 | 2 | …. | 9 

Id - letter (letter / digit)*  

Shorthand’s 
  

Certain constructs occur so frequently in regular expressions that it is convenient to 

introduce notational shorthands for them. 
 

1. One or more instances (+): 

 

o The unary postfix operator + means “ one or more instances of” . 

o If r is a regular expression that denotes the language L(r), then ( r )
+ 

is a regular 

expression that denotes the language (L (r ))
+

 

o Thus the regular expression a
+ 

denotes the set of all strings of one or more a’s. 

o The operator 
+ 

has the same precedence and associativity as the operator 
*
. 
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2. Zero or one instance ( ?): 

 

- The unary postfix operator ? means “zero or one instance of”. 

 

- The notation r? is a shorthand for r | ε. 

 
- If ‘r’ is a regular expression, then ( r )? is a regular expression that denotes the language L( r ) U { 

ε }. 
 

3. Character Classes: 
 

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression 

a | b | c. 

- Character class such as [a – z] denotes the regular expression a | b | c | d | ….|z. 

- We can describe identifiers as being strings generated by the regular expression, 

[A–Za–z][A–Za–z0–9]* 

 

 

Non-regular Set 

A language which cannot be described by any regular expression is a non-regular set. 
Example: The set of all strings of balanced parentheses and repeating strings cannot be described by 
a regular expression. This set can be specified by a context-free grammar. 

 
RECOGNITION OF TOKENS: 

 
Consider the following grammar fragment: stmt → if expr then stmt 

|if expr then stmt else stmt |ε 

 
expr → term relop term |term term → id |num 

 
where the terminals if , then, else, relop, id and num generate sets of strings given by the following 
regular definitions: 
If → if 

then → then 

else → else 
relop → <|<=|=|<>|>|>= 

id → letter(letter|digit)
*

 

num → digit
+ 

(.digit
+
)?(E(+|-)?digit

+
)? 

For this language fragment the lexical analyzer will recognize the keywords if, then, else, as 
well as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords are 
reserved; that is, they cannot be used as identifiers. 
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Lexeme Token Name Attribute Value 

Any ws  _ 

if if _ 

then then _ 

else  _ 

Any id id pointer to table entry 

Any number number Pointer to table entry 

< relop LT 

<= relop LE 

= relop ET 

< > relop NE 
 

TRANSITION DIAGRAM: 

Transition Diagram has a collection of nodes or circles, called states. Each state 
represents a condition that could occur during the process of scanning the input looking for a 
lexeme that matches one of several patterns .Edges are directed from one state of the transition 
diagram to another. each edge is labeled by a symbol or set of symbols.If we are in one state s, 
and the next input symbol is a, we look for an edge out of state s labeled by a. if we find such an 
edge ,we advance the forward pointer and enter the state of the transition diagram to which that 
edge leads. 

Some important conventions about transition diagrams are 

1. Certain states are said to be accepting or final .These states indicates that a lexeme has 
been found, although the actual lexeme may not consist of all positions b/w the lexeme 
Begin and forward pointers we always indicate an accepting state by a double circle. 

2. In addition, if it is necessary to return the forward pointer one position, then we shall 
additionally place a * near that accepting state. 

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled 
“start” entering from nowhere .the transition diagram always begins in the state before 
any input symbols have been used. 
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As an intermediate step in the construction of a LA, we first produce a stylized 
flowchart, called a transition diagram. Position in a transition diagram, are drawn as 
circles and are called as states. 

 

 

 
The above TD for an identifier, defined to be a letter followed by any no of letters or digits.A 
sequence of transition diagram can be converted into program to look for the tokens specified by the 
diagrams. Each state gets a segment of code. 

 

Automata: 

Automation is defined as a system where information is transmitted and used for performing some 
functions without direct participation of man. 

1. An automation in which the output depends only on the input is called automation 
without memory. 

2. An automation in which the output depends on the input and state also is called as 
automation with memory. 

3. An automation in which the output depends only on the state of the machine is called a 
Moore machine. 

4. An automation in which the output depends on the state and input at any instant of time is 

called a mealy machine. 

DESCRIPTION OF AUTOMATA 

1. An automata has a mechanism to read input from input tape, 

2. Any language is recognized by some automation, Hence these automation are basically 
language ‘acceptors’ or ‘language recognizers’. 

 
 

Types of Finite Automata 

o Deterministic Automata 

o Non-Deterministic Automata. 

 

Deterministic Automata: 

A deterministic finite automata has at most one transition from each state on any input. A DFA 
is a special case of a NFA in which:- 

 

1. it has no transitions on input € , 

2. Each input symbol has at most one transition from any state. 
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b 

S1 

DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where Q is a finite ‘set of states’, 
which is non empty. 

∑ is ‘input alphabets’, indicates input set. 

qo is an ‘initial state’ and qo is in Q ie, qo, ∑, Q F is a set of ‘Final states’, 

δ is a ‘transmission function’ or mapping function, using this function the next state can be 
determined. 

The regular expression is converted into minimized DFA by the following procedure: 
 

Regular expression → NFA → DFA → Minimized DFA 

 
 

The Finite Automata is called DFA if there is only one path for a specific input from current 
state to next state. 

 

a 

So 
a 

S2 

 

 

 

 

 

 

 

 

 
From state S0 for input ‘a’ there is only one path going to S2. similarly from so there is only 

one path for input going to S1. 

Nondeterministic Automata: 

A NFA ia A mathematical model consists of 

 A set of states S. 

 A set of input symbols ∑. 

 A transition is a move from one state to another. 
 A state so that is distinguished as the start (or initial) state 
 A set of states F distinguished as accepting (or final )state 

A NFA can be diagrammatically represented by a labeled directed graph, called a transition graph, in 
which the nodes are the states and the labeled edges represent the transition function. 

 
This graph looks like a transition diagram, but the same character can label two or more transitions 
out of one state and edges can be labeled by the special symbol € as well as input symbols. 

 
 

The transition graph for an NFA that recognizes the language (a|b)*abb is shown 
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5. Bootstrapping: 

 
When a computer is first turned on or restarted, a special type of absolute loader, called as bootstrap 
loader is executed. This bootstrap loads the first program to be run by the computer usually an 
operating system. The bootstrap itself begins at address O in the memory of the machine. It loads the 
operating system (or some other program) starting at address 80. After all of the object code from 
device has been loaded, the bootstrap program jumps to address 80, which begins the execution of 
the program that was loaded. 

 
Such loaders can be used to run stand-alone programs independent of the operating system or the 
system loader. They can also be used to load the operating system or the loader itself into memory. 

 

Loaders are of two types: 

 

 Linking loader. 

 Linkage editor. 

Linkage loaders, perform all linking and relocation at load time. 

 
Linkage editors, perform linking prior to load time and dynamic linking, in which the linking 
function is performed at execution time. 

 
A linkage editor performs linking and some relocation; however, the linkaged program is written to a 
file or library instead of being immediately loaded into memory. This approach reduces the overhead 
when the program is executed. All that is required at load time is a very simple form of relocation. 

 

 
 

Linking Lo a d e r 

 

 

 

 

 
Linka g e E dito r 

 

PASS AND PHASES OF TRANSLATION: 

 

Phases: (Phases are collected into a front end and back end) 

O b jec t 
Pro gra m 

L ibrary 
L in kin g 
L o a d er 

M e mo ry 

O b jec t 
Pro gra m 

L ibrary 
L in ka g e 

E d it or 

L in ke d 
Pro gra m 

Re loc at in g 
L o a d er 

M e mo ry 
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Frontend: 

The front end consists of those phases, or parts of phase, that depends primarily on the 
source language and is largely independent of the target machine. These normally include lexical and 
syntactic analysis, the creation of the symbol table, semantic analysis, and the generation of 
intermediate code. 

A certain amount of code optimization can be done by front end as well. the front end also 
includes the error handling tha goes along with each of these phases. 

Back end: 

The back end includes those portions of the compiler that depend on the target machine and 
generally, these portions do not depend on the source language . 

 

 
6. Lexical Analyzer Generator: 

Creating a lexical analyzer with Lex: 

 
 First, a specification of a lexical analyzer is prepared by creating a program lex.l in the 

Lex language. Then, lex.l is run through the Lex compiler to produce a C program 
lex.yy.c. 

 Finally, lex.yy.c is run through the C compiler to produce an object program a.out, which 
is the lexical analyzer that transforms an input stream into a sequence of tokens. 

 

 
 

 

 

 

 

Lex Specification 

 

A Lex program consists of three parts: 

 

{ definitions } 

%% 

{ rules } 

%% 
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{ user subroutines } 

 

o Definitions include declarations of variables, constants, and regular definitions 

o Rules are statements of the form p1 {action1}p2 {action2} … pn {action} 
o where pi is regular expression and actioni describes what action the lexical 

analyzer should take when pattern pi matches a lexeme. Actions are written in C 

code. 

o User subroutines are auxiliary procedures needed by the actions. These can be 
compiled separately and loaded with the lexical analyzer. 

 

7. INPUT BUFFERING 

The LA scans the characters of the source program one at a time to discover tokens. Because 
of large amount of time can be consumed scanning characters, specialized buffering techniques have 
been developed to reduce the amount of overhead required to process an input character. 

 



 

 

Buffering techniques: 

 
1. Buffer pairs 

2. Sentinels 
 

The lexical analyzer scans the characters of the source program one a t a time to discover tokens.Often, 

however, many characters beyond the next token many have to be examined before the next token itself can 

be determined. For this and other reasons, it is desirable for the lexical analyzer to read its input from an 

input buffer. Figure shows a buffer divided into two halves of, say 100 characters each. One pointer marks 

the beginning of the token being discovered. A look ahead pointer scans ahead of the beginning point, until 

the token is discovered .we view the position of each pointer as being between the character last read and 

the character next to be read. In practice each buffering scheme adopts one convention either a pointer is at 

the symbol last read or the symbol it is ready to read. 

 
Token beginnings look ahead pointer, The distance which the look ahead pointer may have to 

travel past the actual token may be large. 

For example, in a PL/I program we may see: DECALRE (ARG1, ARG2… ARG n) without 
knowing whether DECLARE is a keyword or an array name until we see the character that follows the 
right parenthesis. 
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UNIT – II 
 

TOPDOWN PARSING 
 

1. Context-free Grammars: Definition: 

 
Formally, a context-free grammar G is a 4-tuple G = (V, T, P, S), where: 

1. V is a finite set of variables (or nonterminals). These describe sets of “related” strings. 

2. T is a finite set of terminals (i.e., tokens). 

3. P is a finite set of productions, each of the form 

A  

where A  V is a variable, and   (V  T)* is a sequence of terminals and nonterminals. S V 
is the start symbol. 

Example of CFG: 

E ==>EAE | (E) | -E | id A==> + | - | * | / | 

Where E, A are the non-terminals while id, +, *, -, /,(, ) are the terminals. 2. Syntax analysis: 

 
In syntax analysis phase the source program is analyzed to check whether if conforms to the source 
language’s syntax, and to determine its phase structure. This phase is often separated into two phases: 

 

 Lexical analysis: which produces a stream of tokens? 

 Parser: which determines the phrase structure of the program based on the context-free 
grammar for the language? 

 
 

PARSING: 

 
Parsing is the activity of checking whether a string of symbols is in the language of some grammar, 
where this string is usually the stream of tokens produced by the lexical analyzer. If the string is in 
the grammar, we want a parse tree, and if it is not, we hope for some kind of error message 
explaining why not. 

 

There are two main kinds of parsers in use, named for the way they build the parse trees: 

 Top-down: A top-down parser attempts to construct a tree from the root, applying 
productions forward to expand non-terminals into strings of symbols. 

 Bottom-up: A Bottom-up parser builds the tree starting with the leaves, using productions 
in reverse to identify strings of symbols that can be grouped together. 
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Sy mb o l 
T a b le 

In both cases the construction of derivation is directed by scanning the input sequence from left to 
right, one symbol at a time. 

 

Parse Tree: 
 

 

L e xic a l 
     

 
Re s t o  

 P ars er A n a ly z e fro nt e n  

 

 

 

 

 

 

A parse tree is the graphical representation of the structure of a sentence according to its grammar. 
 

Example: 

Let the production P is: 

 

E T | E+T 

T F | T*F 

F V | (E) 

V a | b | c |d 

 
The parse tree may be viewed as a representation for a derivation that filters out the choice regarding 
the order of replacement. 

 
 

Parse tree for a * b + c 
 
 

 

E 
 
T 

  

T+ F 

  
F V 

  
V b 

 

a 
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Parse tree for (a * b) * (c + d) 

 
 
 

 
 

 

E 

T 

F V 
 

c 

V b 

a 

 

SYNTAX TREES: 
 

Parse tree can be presented in a simplified form with only the relevant structure information by: 

 Leaving out chains of derivations (whose sole purpose is to give operators difference 
precedence). 

 Labeling the nodes with the operators in question rather than a non-terminal. 

 

The simplified Parse tree is sometimes called as structural tree or syntax tree. 
 
 

 
a * b + c 

 
a + 

 
(a + b) * (c + d) 

 
E E 

   

  +    

 +     

 a  (E  (E) 

* c     

a b 
b c   

   a b d 

 Synt a x T re e s   

 E   

 
T 

  

 
T 

 
* 

  
F 

    

F   (E 

    

(E E  T 

    

T    
    

    

F F 

V 

 V 

d 
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Syntax Error Handling: 

 
If a compiler had to process only correct programs, its design & implementation would be greatly 
simplified. But programmers frequently write incorrect programs, and a good compiler should 
assist the programmer in identifying and locating errors.The programs contain errors at many 
different levels. 
For example, errors can be: 

 

1) Lexical – such as misspelling an identifier, keyword or operator 

2) Syntactic – such as an arithmetic expression with un-balanced parentheses. 

3) Semantic – such as an operator applied to an incompatible operand. 

4) Logical – such as an infinitely recursive call. 

 
Much of error detection and recovery in a compiler is centered around the syntax analysis phase. The 
goals of error handler in a parser are: 

 It should report the presence of errors clearly and accurately. 

 It should recover from each error quickly enough to be able to detect subsequent errors. 

 It should not significantly slow down the processing of correct programs. 

 
Ambiguity: 

 
Several derivations will generate the same sentence, perhaps by applying the same productions in 
a different order. This alone is fine, but a problem arises if the same sentence has two distinct 
parse trees. A grammar is ambiguous if there is any sentence with more than one parse tree. 

Any parses for an ambiguous grammar has to choose somehow which tree to return. There 
are a number of solutions to this; the parser could pick one arbitrarily, or we can provide 

some hints about which to choose. Best of all is to rewrite the grammar so that it is not ambiguous. 

There is no general method for removing ambiguity. Ambiguity is acceptable in spoken 
languages. Ambiguous programming languages are useless unless the ambiguity can be resolved. 

 

Fixing some simple ambiguities in a grammar: 
 Ambiguous language unambiguous 

(i) A  B | AA Lists of one or more B’s A  BC 

  C  A | E  

(ii) A  B | A;A Lists of one or more B’s with punctuation A  BC 
  C  ;A | E  

(iii) A  B | AA | E lists of zero or more B’s A  BA | E 

 
Any sentence with more than two variables, such as (arg, arg, arg) will have multiple parse trees. 

 
 

Left Recursion: 



If there is any non terminal A, such that there is a derivation A the A  for some string, then 
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grammar is left recursive. 

Algorithm for eliminating left Recursion: 
 

Group all the A productions together like this: A  A 1 | A 2 | - - - | A m | 1 | 2 | - -- | n where 

A is the left recursive non-terminal, 

 is any string of terminals and 

 is any string of terminals and non terminals that does not begin with A. 

 

1. Replace the above A productions by the following: A  1 A
I 

| 2 A
I 

| - - - | n A
I
 

A
I 
 1 A

I 
| 2 A

I 
| - - - |m A

I 
|  Where, A

I 
is a new non terminal. 

Top down parsers cannot handle left recursive grammars. 

 

If our expression grammar is left recursive: 
 

 This can lead to non termination in a top-down parser. 

 for a top-down parser, any recursion must be right recursion. 

 we would like to convert the left recursion to right recursion. 

 

Example 1: 

Remove the left recursion from the production: A  A  | 





Applying the transformation yields: 

A   A
I
 

A
I 
  A

I 
| 


Remaining part after A. 

 

Example 1: 

Remove the left recursion from the productions: 

Left Recursive. 

Eliminate 
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E  E + T | T  

T  T * F | F  

Applying the transformation yields: 

E  T E
I
 T  F T

I
 

E
I 
 T E

I 
|  T

I 
 * F T

I 
| 

Example 2: 

Remove the left recursion from the productions: 

E  E + T | E – T | T 

T  T * F | T/F | F 

Applying the transformation yields: 

E  T E
I
 T  F T

I
 

E  + T E
I 

| - T E
I 

|  T
I 
 * F T

I 
| /F T

I 
| 

 

 
1. The non terminal S is left recursive because S  A a  S d a But 

it is not immediate left recursive. 

2. Substitute S-productions in A  S d to obtain: 

A  A c | A a d | b d | 

3. Eliminating the immediate left recursion: 

 
Left Factoring: 

Left factoring is a grammar transformation that is useful for producing a grammar suitable for 
predictive parsing. 

When it is not clear which of two alternative productions to use to expand a non-terminal A, we may 
be able to rewrite the productions to defer the decision until we have some enough of the input to 
make the right choice. 

 

Algorithm: 

For all A  non-terminal, find the longest prefix  that occurs in two or more right-hand sides of A. 

If    then replace all of the A productions, A   I |  2 | - - - |  n | r 
With 

A   A
I 

| r 

A
I 
 I | 2| - - - | n | 

Where, A
I 
is a new element of non-terminal. Repeat until no common prefixes remain. 

It is easy to remove common prefixes by left factoring, creating new non-terminal. 

For example consider: 

V    |  r Change to: 

V   V
I 

V
I 
  | r 

Example 1: 

Eliminate Left factoring in the grammar: S  V := int 

V  alpha ‘[‘ int ’]’ | alpha 
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Becomes: 

S  V := int 

V  alpha V
I
 

V
I 
 ’[‘ int ’] | 

TOP DOWN PARSING: 

 
Top down parsing is the construction of a Parse tree by starting at start symbol and “guessing” each 
derivation until we reach a string that matches input. That is, construct tree from root to leaves.The 
advantage of top down parsing in that a parser can directly be written as a program. Table-driven top- 
down parsers are of minor practical relevance. Since bottom-up parsers are more powerful than top- 
down parsers, bottom-up parsing is practically relevant. 
For example, let us consider the grammar to see how top-down parser works: 

 
S  if E then S else S | while E do S | print 

E  true | False | id 

 

The input token string is: If id then while true do print else print. 

1. Tree: 

S 

 

Input: if id then while true do print else print. 

Action: Guess for S. 

2. Tree: 

 
S 

if E t h e n S e ls e S 

 
Input: if id then while true do print else print. 

Action: if matches; guess for E. 

3. Tree: 

 
S 

if E t h e n S e ls e S 

 
id 

Input: id then while true do print else print. Action: id 

matches; then matches; guess for S. 

 

 
4. Tree: 

 
S 
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if t h e n S e ls S 

     

 w h ile E d o S  

 

Input: while true do print else print. 

Action: while matches; guess for E. 

5. Tree: 
 
 

 S    

 
if 

 
t h e 

 
S 

 
e ls 

 
S 

     

 w h i Ed o S  

     

 t ru e   

 

Input: true do print else print 

Action:true matches; do matches; guess S. 

 

 
Recursive Descent Parsing: 

 
Top-down parsing can be viewed as an attempt to find a left most derivation for an input string. 

Equivalently, it can be viewd as a attempt to construct a parse tree for the input starting from the root 
and creating the nodes of the parse tree in preorder. 

The special case of recursive –decent parsing, called predictive parsing, where no backtracking 
is required. The general form of top-down parsing, called recursive descent, that may involve 
backtracking, that is, making repeated scans of the input. 

Recursive descent or predictive parsing works only on grammars where the first terminal 
symbol of each sub expression provides enough information to choose which production to use. 

Recursive descent parser is a top down parser involving backtracking. It makes a repeated 
scans of the input. Backtracking parsers are not seen frequently, as backtracking is very needed to 
parse programming language constructs. 
a single node labeled scan input pointer points to c, the first symbol of w. we then use the first 
production for S to expand tree and obtain the tree. 

The left most leaf, labeled c, matches the first symbol of w, so we now advance the input 
pointer to a ,the second symbol of w, and consider the next leaf, labeled A. We can then expand A 
using the first alternative for A to obtain the tree in Fig (b). we now have a match for the second 
input symbol so we advance the input pointer to d, the third, input symbol, and compare d against the 
next leaf, labeled b. since b does not match the d ,we report failure and go back to A to see where 
there is any alternative for Ac that we have not tried but that might produce a match. 

 
In going back to A, we must reset the input pointer to position2,we now try second alternative 

for A to obtain the tree of Fig(c).The leaf matches second symbol of w and the leaf d matches the 
third symbol . 
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The left recursive grammar can cause a recursive- descent parser, even one with backtracking, 
to go into an infinite loop.That is ,when we try to expand A, we may eventually find ourselves again 
trying to ecpand A without Having consumed any input. 

 

Predictive Parsing: 

Predictive parsing is top-down parsing without backtracking or look a head. For many 
languages, make perfect guesses (avoid backtracking) by using 1-symbol look-a-head. i.e., if: 
A  I |  2 | - - - | n. 

Choose correct i by looking at first symbol it derive. If  is an alternative, choose it last. 

This approach is also called as predictive parsing. There must be at most one production in 
order to avoid backtracking. If there is no such production then no parse tree exists and an error is 
returned. 

The crucial property is that, the grammar must not be left-recursive. 

Predictive parsing works well on those fragments of programming languages in which keywords 
occurs frequently. 
For example: 

stmt  if exp then stmt else stmt | while expr do stmt 

| begin stmt-list end. 

then the keywords if, while and begin tell, which alternative is the only one that could possibly 
succeed if we are to find a statement. 
The model of predictive parser is as follows: 

 

 

 

 

A predictive parser has: 
 

 Stack 

 Input 

 Parsing Table 

 Output 

 
The input buffer consists the string to be parsed, followed by $, a symbol used as a right end 

marker to indicate the end of the input string. 

The stack consists of a sequence of grammar symbols with $ on the bottom, indicating the bottom of 
the stack. Initially the stack consists of the start symbol of the grammar on the top of $. 

Recursive descent and LL parsers are often called predictive parsers, because they operate by 
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predicting the next step in a derivation. 

 
The algorithm for the Predictive Parser Program is as follows: Input: A string w and a parsing 
table M for grammar G 

Output: if w is in L(g),a leftmost derivation of w; otherwise, an error indication. 

Method: Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in the 

input buffer. The program that utilizes the predictive parsing table M to produce a parse for the input 

is: Set ip to point to the first symbol of w$; repeat let x be the top stack symbol and a the symbol 

pointed to by ip; 

 if X is a terminal or $ then if X = a then 

pop X from the stack and advance ip else error() 

else /* X is a non-terminal */ 


if M[X, a] = X Y1 Y2 .................... Yk thenbegin 
 

 

 
     production X Y1 Y2 ............... Yk 

pop X from the stack; 
push Yk, Yk-1, ..................... Y1 onto the stack, with Y1 on top;  

output the 
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else error() 

until X = $ /*stack is empty*/ 

 

 
FIRST and FOLLOW: 

The construction of a predictive parser is aided by two functions with a grammar G. these 
functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G, 
whenever possible. Sets of tokens yielded by the FOLLOW function can also be used as 
synchronizing tokens during pannic-mode error recovery. 

If α is any string of grammar symbols, let FIRST (α) be the set of terminals that begin the 
strings derived from α. If α=>€,then € is also in FIRST(α). 

 
Define FOLLOW (A), for nonterminals A, to be the set of terminals a that can appear 

immediately to the right of A in some sentential form, that is, the set of terminals a such that there 
exist a derivation of the form S=>αAaβ for some α and β. If A can be the rightmost symbol in some 
sentential form, then $ is in FOLLOW(A). 

 

Computation of FIRST (): 

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more 
terminals or € can be added to any FIRST set. 

 If X is terminal, then FIRST(X) is {X}. 

 If X→€ is production, then add € to FIRST(X). 

 If X is nonterminal and X→Y1 Y2……Yk is a production, then place a in 
FIRST(X) if for some i,a is in FIRST(Yi),and € is in all of FIRST(Yi),and € is in 
all of FIRST(Y1),….. FIRST(Yi-1);that is Y1 .................... Yi-1==>€.if € is in 

FIRST(Yj), for all j=,2,3…….k, then add € to FIRST(X).for example, everything 
in FIRST(Y1) is surely in FIRST(X).if Y1 does not derive €,then we add nothing 
more to FIRST(X),but if Y1=>€,then we add FIRST(Y2) and so on. 

 
FIRST (A) = FIRST (I) U FIRST (2) U - - - U FIRST (n) Where, A  1 | 2 | ------- |n, are all the productions 

for A. FIRST (A) = if   FIRST (A) then FIRST (A) 

else (FIRST (A) - {}) U FIRST () 

 
Computation of FOLLOW (): 

 
To compute FOLLOW (A) for all nonterminals A, apply the following rules until nothing can be 

added to any FOLLOW set. 

 Place $ in FOLLOW(s), where S is the start symbol and $ is input right end marker . 

 If there is a production A→αBβ,then everything in FIRST(β) except for € is placed in 
FOLLOW(B). 

 If there is production A→αB, or a production A→αBβ where FIRST (β) contains € 
(i.e.,β→€),then everything in FOLLOW(A)is in FOLLOW(B). 
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Example: 

Construct the FIRST and FOLLOW for the grammar: 

 

A  BC | EFGH | H 

B  b 

C  c |  

E  e |  

F  CE 

G  g 

H  h | 



Solution: 

1. Finding first () set: 

1. first (H) = first (h)  first () = {h, } 

2. first (G) = first (g) = {g} 

3. first (C) = first (c)  first () = c, } 

4. first (E) = first (e)  first () = {e, } 

5. first (F) = first (CE) = (first (c) - {})  first (E) 

= (c, } {})  {e, } = {c, e, } 

6. first (B) = first (b)={b} 

7. first (A) = first (BC)  first (EFGH)  first (H) 

= first (B)  (first (E) – { })  first (FGH)  {h, } 

= {b, h, }  {e}  (first (F) – {})  first (GH) 

= {b, e, h, }  {C, e}  first (G) 

= {b, c, e, h, }  {g} = {b, c, e, g, h, } 

 
2. Finding follow() sets: 

 
1. follow(A) = {$} 
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2. follow(B) = first(C) – {}  follow(A) = {C, $} 

3. follow(G) = first(H) – {}  follow(A) 

={h, } – {}  {$} = {h, $} 

4. follow(H) = follow(A) = {$} 

5. follow(F) = first(GH) – {} = {g} 

6. follow(E) = first(FGH) m- {}  follow(F) 

= ((first(F) – {})  first(GH)) – {}  follow(F) 

= {c, e}  {g}  {g} = {c, e, g} 

7. follow(C) = follow(A)  first (E) – {}  follow (F) 

={$}  {e, }  {g} = {e, g, $} 

 

 
Example 1: 

 
Construct a predictive parsing table for the given grammar or Check whether the given grammar is 
LL(1) or not. 

E  E + T | T 

T  T * F | F F  (E) | id 

 

Step 1: 

Suppose if the given grammar is left Recursive then convert the given grammar (and ) into non-left 
Recursive grammar (as it goes to infinite loop). 
E  T E

I
 

E
I 
 + T E

I 
|  T

I 
 F T

I
 

T
I 
 * F T

I 
|  F  (E) | id 

Step 2: 

Find the FIRST(X) and FOLLOW(X) for all the variables. 

The variables are: {E, E
I
, T, T

I
, F} 

Terminals are: {+, *, (, ), id} and $ 
Computation of FIRST() sets: 

 

FIRST (F) = FIRST ((E)) U FIRST (id) = {(, id} 

FIRST (T
I
) = FIRST (*FT

I
) U FIRST () = {*, } 

FIRST (T) = FIRST (FT
I
) = FIRST (F) = {(, id} 

FIRST (E
I
) = FIRST (+TE

I
) U FIRST () = {+, } 

FIRST (E) = FIRST (TE
I
) = FIRST (T) = {(, id} 

Computation of FOLLOW () sets: 
Relevant production 

 

FOLLOW (E) = {$} U FIRST ( ) ) = {$, )} F  (E) 
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FOLLOW (E
I
) = FOLLOW (E) = {$, )} E  TE

I 

FOLLOW (T) = (FIRST (E
I
) - {}) U FOLLOW (E) U FOLLOW (E

I
) E  TE

I
 

= {+, E
I 
 +TE

I
 

FOLLOW (T
I
) = FOLLOW (T) = {+, ), $} T  FT

I 

FOLLOW (F) = (FIRST (T
I
) - {}) U FOLLOW (T) U FOLLOW (T

I
) T  T

I
 

= {*, +, 
 

Step 3: 

Construction of parsing table: 

 

Termina  

+ 

  

( 
 

) 
 

id 
 

$ 
Variables 

E 
  

E  TE 
 

E  TE
I
 
 

EI 
E    

E
I 
 

 

E 
I 
 +TE

I
 

T 
  

T  FT 
 

T  FT
I
 
 

TI 
T

I 
  T

I 
 *F 

 
T

I 
 

 
T

I 
 

F   F  (E  F  id  

Table 3.1. Parsing Table 

 
Fill the table with the production on the basis of the FIRST(). If the input symbol is an  in FIRST(), then goto 
FOLLOW() and fill   , in all those input symbols. 

Let us start with the non-terminal E, FIRST(E) = {(, id}. So, place the production E  TE
I 

at ( and id. 

For the non-terminal E
I
, FIRST (E

I
) = {+, }. 

So, place the production E
I 
 +TE

I 
at + and also as there is a  in FIRST(E

I
), see 

FOLLOW(E
I
) = {$, )}. So write the production E

I 
  at the place $ and ). 

 

Similarly: 

 

For the non-terminal T, FIRST(T) = {(, id}. So place the production T  FT
I 

at ( and id. 

For the non-terminal T
I
, FIRST (T

I
) = {*, } 

So place the production T
I 
 *FT

I 
at * and also as there is a  in FIRST (T

I
), see 

FOLLOW (T
I
) = {+, $, )}, so write the production T

I 
  at +, $ and ). 

For the non-terminal F, FIRST (F) = {(, id}. 

So place the production F  id at id location and F  (E) at ( as it has two productions. 
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Finally, make all undefined entries as error. 

As these were no multiple entries in the table, hence the given grammar is LL(1). 
Step 4: 

Moves made by predictive parser on the input id + id * id is: 

 

STACK INPUT REMARKS 

 
$ E 

 
id + id * id $ 

E and id are not identical; so see E on id in parse table, the 

production is ETE
I
; pop E, push E

I 
and T i.e., move in 

reverse order. 

$ E
I 
T id + id * id $ 

See T on id the production is T  F T ; 

Pop T, push T
I 
and F; Proceed until both are identical. 

$ E
I 
T

I 
F id + id * id $ F  id 

$ E
I 
T

I 
id id + id * id $ Identical; pop id and remove id from input symbol. 

$ E
I 
T

I
 + id * See T

I 
on +; T

I 
  so, pop T

I
 

$ E
I
 + id * See E

I 
on +; E

I 
 +T E

I
; push E

I 
, + and T 

$ E
I 
T + + id * Identical; pop + and remove + from input symbol. 

$ E
I 
T id * 

 

$ E
I 
T

I 
F id * T  F T

I
 

$ E
I 
T

I 
id id * F  id 

$ E
I 
T

I
 * 

 

$ E
I 
T

I 
F * * T

I 
 * F T

I
 

$ E
I 
T

I 
F 

  

$ E
I 
T

I 
id 

 
F  id 

$ E
I 
T

I
 

 
T

I 
 

$ E
I
 

 
E

I 
 

$  Accept. 

Table 3.2 Moves made by the parser on input id + id * id 

 

Predictive parser accepts the given input string. We can notice that $ in input and stuck, i.e., both are 
empty, hence accepted. 

 

LL (1) Grammar: 

 
The first L stands for “Left-to-right scan of input”. The second L stands for “Left-most derivation”. The ‘1’ stands 
for “1 token of look ahead”. 
No LL (1) grammar can be ambiguous or left recursive. 
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If there were no multiple entries in the Recursive decent parser table, the given grammar is LL (1). 

 
If the grammar G is ambiguous, left recursive then the recursive decent table will have atleast one 
multiply defined entry. 

 
The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which production to use. 

 

Error Recovery in Predictive Parser: 

Error recovery is based on the idea of skipping symbols on the input until a token in a 
selected set of synchronizing tokens appear. Its effectiveness depends on the choice of synchronizing 
set. The Usage of FOLLOW and FIRST symbols as synchronizing tokens works reasonably well 
when expressions are parsed. 

 
For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and then fill 
the rest of the columns with error term. 

 

Terminal  

+ 

 

* 

 

( 

 

) 

 

id 

 

$ 
Variables 

E error error E  TE synch E  TE
I
 synch 

EI 

E 

error error E
I 
  error E 

I 
+TE

I
 

T synch error T  FT synch T  FT
I
 synch 

TI T
I 
  T

I 
 *F error T

I 
  error T

I 
 

F synch synch F  (E) synch F  id synch 

Table3.3 :Synchronizing tokens added to parsing table for table 3.1. 

 

 
If the parser looks up entry in the table as synch, then the non terminal on top of the stack is popped 
in an attempt to resume parsing. If the token on top of the stack does not match the input symbol, 
then pop the token from the stack. 

 

The moves of a parser and error recovery on the erroneous input) id*+id is as follows: 
 

 

STACK IN REMARKS 

$ E ) id * + Error, skip ) 

$ E id * +  

$ E
I 
T id * +  

$ E
I 
T

I 
F id * +  

$ E
I 
T

I 
id id * +  

$ E
I 
T

I
 * +  

$ E
I 
T

I 
F * * +  



 

 

 

 $ E
I 
T

I 
F + Error; F on + is synch; F has been popped.  

$ E
I 
T

I
 +  

$ E
I
 +  

$ E
I 
T + +  

$ E
I 
T   

$ E
I 
T

I 
F   

$ E
I 
T

I 
id   

$ E
I 
T

I
   

$ E
I
   

$  Accept. 

  

Example 2: 

Table 3.4. Parsing and error recovery moves made by predictive parser 

 

Construct a predictive parsing table for the given grammar or Check whether the given gramma 
LL(1) or not. 

S  iEtSS
I 

| a 

S
I 
 eS | 

E  b 

 

 
Solution: 

1. Computation of First () set: 

 
1. First (E) = first (b) = {b} 

2. First (S
I
) = first (eS)  first () = {e, } 

3. first (S) = first (iEtSS
I
)  first (a) = {i, a} 

 
2. Computation of follow() set: 

1. follow (S) = {$}  first (S
I
) – {}  follow (S)  follow (S

I
) 

= {$}  {e} = {e, $} 

2. follow (S
I
) = follow (S) = {e, $} 

3. follow (E) = first (tSS
I
) = {t} 

 
3. The parsing table for this grammar is: 

 

 

 

 
r is 
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As the table multiply defined entry. The given grammar is not LL(1). 

 
 

Example 3: 

 

Construct the FIRST and FOLLOW and predictive parse table for the grammar: 

 

S  AC$ 

C  c | 

A  aBCd | BQ | 

B  bB | d 

Q  q 

Solution: 

1. Finding the first () sets: First (Q) = {q} 

First (B) = {b, d} 

First (C) = {c, } 

First (A) = First (aBCd)  First (BQ)  First () 

= {a}  First (B)  First (d) {} 

= {a}  First (bB)  First (d)  {} 

= {a}  {b}  {d}  {} 

= {a, b, d, } First (S) = First (AC$) 

= (First (A) – {})  (First (C) – {})  First () 

= ({a, b, d, } – {})  ({c, } – {})  {} 

= {a, b, d, c, } 

 

2. Finding Follow () sets: Follow (S) = {#} 

Follow (A) = (First (C) – {})  First ($) = ({c, } – {})  {$} Follow (A) = {c, $} 

Follow (B) = (First (C) – {})  First (d)  First (Q) 

= {c}  {d}  {q} = {c, d, q} Follow (C) = (First ($)  First (d) = {d, $} 

Follow (Q) = (First (A) = {c, $} 

 

3. The parsing table for this grammar is: 
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a 


S AC$ 

b c D $ 

S AC 
  

$ 

A BQ 


S AC 
$ 


A 

S AC 


$ 




B d 

A BQ 

S AC 
$ 


A 



C 


C 


Q q Q 



C c C 



B bB B 



A aBCd A 

S 

q 

 

 

4. Moves made by predictive parser on the input abdcdc$ is: 

 
Stack symbol Input Remarks 

#S abdcdc$# 


S AC$ 

#$CA abdcdc$# 


A aBCd 

#$CdCBa abdcdc$# Pop a 

#$CdCB bdcdc$# 


B bB 

#$CdCBb bdcdc$# Pop b 

#$CdCB dcdc$# 


B d 

#$CdCd dcdc$# Pop d 

#$CdC cdc$# 


C c 

#$Cdc cdc$# Pop C 

#$Cd dc$# Pop d 

#$C c$# 


C c 

#$c c$# Pop c 

#$ $# Pop $ 

# # Accepted 

 

 

BOTTOM UP PARSING 

 
1. BOTTOM UP PARSING: 

 
Bottom-up parser builds a derivation by working from the input sentence back towards the start 

symbol S. Right most derivation in reverse order is done in bottom-up parsing. 

(The point of parsing is to construct a derivation. A derivation consists of a series of rewrite steps) 

Sr0r1r2- - - rn-1rnsentence 

Bottom-up 
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Assuming the production A, to reduce ri ri-1 match some RHS  against ri then replace  with its 
corresponding LHS, A. 

 

In terms of the parse tree, this is working from leaves to root. 
 

Example – 1: 

Sif E then S else S/while E do S/ print 

E true/ False/id 

Input: if id then while true do print else print. 

Parse tree: 

Basic idea: Given input string a, “reduce” it to the goal (start) symbol, by looking for 

substring that match production RHS. 

S 
 
 
 
 
 

if then S  Clse S 

     
I 

 While E do S Pri 
S      

  I  I  

  tru    

 

 if E then S else S 
lm 

 if id then S else S 

lm 

 if id then while E do S else S 

lm 

 if id then while true do S else S 
lm 

 if id then while true do print else S 

lm 
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 if id then while true do print else print 
lm 

 if E then while true do print else print 

rm 

 if E then while E do print else print 

rm 

 if E then while E do S else print 
rm 

 if E then S else print 
rm 

 if E then S else S 
rm 

 S 
rm 

 
Topdown Vs Bottom-up parsing: 

 

Top-down Bottom-up 

1. Construct tree from root to leaves 1. Construct tree from leaves to root 

2. “Guers” which RHS to substitute for 2. “Guers” which rule to “reduce” 

nonterminal terminals 

3. Produces left-most derivation 3. Produces reverse right-most derivation. 

4. Recursive descent, LL parsers 4. Shift-reduce, LR, LALR, etc. 

5. Recursive descent, LL parsers 5. “Harder” for humans. 

6. Easy for humans   

 

 
 Bottom-up can parse a larger set of languages than topdown. 

 

 Both work for most (but not all) features of most computer languages. 

Example – 2: 

Right-most derivation 

SaAcBe llp: abbcde/ SaAcBe 

AAb/b  aAcde 

Bd aAbcde 

 abbcde 
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Bottom-up approach 
 

“Right sentential form” Reduction 

abbcde  

aAbcde Ab 

Aacde AAb 

AacBe Bd 

S SaAcBe 

 

Steps correspond to a right-most derivation in reverse. 
 

(must choose RHS wisely) 

Example – 3: 

SaABe 

AAbc/b 

Bd 

1/p: abbcde 

Right most derivation: 
 

aABe  

aAde Since ( ) Bd 

aAbcde Since ( ) AAbc 

abbcde Since ( ) Ab 

 

 
Parsing using Bottom-up approach: 

 

Input Production used 

abbcde  

aAbcde Ab 

AAde AAbc 

AABe Bd 
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S parsing is completed as we got a start symbol 
 

Hence the 1/p string is acceptable. 

Example – 4 

EE+E 

EE*E 

E(E) 

Eid 

1/p: id1+id2+id3 

 
Right most derivation 

E E+E 

E+E*E 

E+E*id3 E+id2*id3 

id1+id2*id3 

Parsing using Bottom-up approach: 

Go from left to right 

id1+id2*id3 

E+id2*id3 

E+E*id3 

E*id3 

E*E 

E 

Eid 

Eid 

EE+E 

Eid 

= start symbol, Hence acceptable. 
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2. HANDLES: 

 
Always making progress by replacing a substring with LHS of a matching production will not lead to 
the goal/start symbol. 

For example: 
 

abbcde 
 

aAbcde Ab 

aAAcde Ab 

struck 

Informally, A Handle of a string is a substring that matches the right side of a production, and whose 

reduction to the non-terminal on the left side of the production represents one step along the reverse 

of a right most derivation. 

If the grammar is unambiguous, every right sentential form has exactly one handle. 

 

More formally, A handle is a production A and a position in the current right-sentential form 

 such that: 

SA/

For example grammar, if current right-sentential form is 

a/Abcde 

Then the handle is AAb at the marked position. ‘a’ never contains non-terminals. 

HANDLE PRUNING: 

Keep removing handles, replacing them with corresponding LHS of production, until we reach S. 

Example: 

EE+E/E*E/(E)/id 
 

Right-sentential form Handle Reducing production 

a+b*c a Eid 

E+b*c b Eid 
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E+E*C C Eid 

E+E*E E*E EE*E 

E+E E+E EE+E 

E   

The grammar is ambiguous, so there are actually two handles at next-to-last step. We can use 

parser-generators that compute the handles for us. 

3. SHIFT- REDUCE PARSING: 
 

Shift Reduce Parsing uses a stuck to hold grammar symbols and input buffer to hold string to be 

parsed, because handles always appear at the top of the stack i.e., there’s no need to look deeper into 

the state. 

A shift-reduce parser has just four actions: 

1. Shift-next word is shifted onto the stack (input symbols) until a handle is formed. 

2. Reduce – right end of handle is at top of stack, locate left end of handle within the stack. Pop 

handle off stack and push appropriate LHS. 

3. Accept – stop parsing on successful completion of parse and report success. 

4. Error – call an error reporting/recovery routine. 

Possible Conflicts: 

Ambiguous grammars lead to parsing conflicts. 

 
1. Shift-reduce: Both a shift action and a reduce action are possible in the same state (should we 

shift or reduce) 

Example: dangling-else problem 

 
2. Reduce-reduce: Two or more distinct reduce actions are possible in the same state. (Which 

production should we reduce with 2). 
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Example:    

Stmt id (param) (a(i) is procedure call)  

Param id    

Expr  id (expr) /id (a(i) is array subscript)  

Stack  input buffer action 

$…aa (i ) ….$ Reduce by ?  
 

Should we reduce to param or to expr? Need to know the type of a: is it an array or a function. This 

information must flow from declaration of a to this use, typically via a symbol table. 

Shift – reduce parsing example: (Stack implementation) 
 

Grammar: EE+E/E*E/(E)/id Input: id1+id2+id3 

One Scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser. Shift 

reduce parsers use stack and an input buffer. 

The sequence of steps is as follows: 

1. initialize stack with $. 

2. Repeat until the top of the stack is the goal symbol and the input token is “end of life”. a. Find 

the handle 
 

If we don’t have a handle on top of stack, shift an input symbol onto the stack. 

b. Prune the handle 

 
if we have a handle (A) on the stack, reduce 

 

(i) pop // symbols off the stack (ii)push A onto the stack. 
 
 

Stack input Action 

$ id1+id2*id3$ Shift 

$ id1 +id2*id3$ Reduce by Eid 

$E +id2*id3$ Shift 

$E+ id2*id3$ Shift 

$E+ id2 *id3$ Reduce by Eid 
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$E+E *id3$ Shift 

$E+E* id3$ Shift 

$E+E* id3 $ Reduce by Eid 

$E+E*E $ Reduce by EE*E 

$E+E $ Reduce by EE+E 

$E $ Accept 

 
 

Example 2: 

Goal 
 

Expr 

Expr 


Expr + term |Expr – Term | Term 

Term 
 

Tem & Factor | Term | factor | 

FacotrFactor 
 

number | id | (Expr) 

The expression grammar : x – z * y 
 

Stack Input Action 

$ Id - num * id Shift 

$ id - num * id 


Reduce factor id 

$ Factor - num * id 


Reduce Term Factor 

$ Term - num * id 


Reduce Expr Term 

$ Expr - num * id Shift 

$ Expr - num * id Shift 

$ Expr – num * id 


Reduce Factor num 

$ Expr – Factor * id 


Reduce Term Factor 

$ Expr – Term * id Shift 

$ Expr – Term * id Shift 
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1. shift until the top of the stack is the right end of a handle 

2. Find the left end of the handle & reduce. 

 

 
Procedure: 

 

1. Shift until top of stack is the right end of a handle. 

2. Find the left end of the handle and reduce. 

* Dangling-else problem: 

 
stmtif expr then stmt/if expr then stmt/other then example string is: if E1 then if E2 then S1 else S2 

has two parse trees (ambiguity) and so this grammar is not of LR(k) type. 

Stmt 
 

 
If expr then stmt  

    

E if expr then stmt else stmt. 
 

 
 

  Stmt    

 

If 

 

expr 

 

then 

 

stmt else 

 

stmt 
 

 
 

    

 EI if expr then stmt S2 

    

E2 
 

S1 
 

 

$ Expr – Term * id 
 

Reduce Factor id 

$ Expr – Term & Factor 
 

Reduce Term Term * Factor 

$ Expr – Term 
 

Reduce Expr Expr – Term 

$ Expr 
 

Reduce Goal Expr 

$ Goal  Accept 
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3. OPERATOR – PRECEDENCE PARSING: 

Precedence/ Operator grammar: The grammars having the property: 

1. No production right side is should contain . 

2. No production sight side should contain two adjacent non-terminals. 

Is called an operator grammar. 

Operator – precedence parsing has three disjoint precedence relations, <.,=and .> between certain 

pairs of terminals. These precedence relations guide the selection of handles and have the following 

meanings: 

 
 

RELATION MEANING 

a<.b ‘a’ yields precedence to ‘b’. 

a=b ‘a’ has the same precedence ‘b’ 

a.>b ‘a’ takes precedence over ‘b’. 

Operator precedence parsing has a number of disadvantages: 
 

1. It is hard to handle tokens like the minus sign, which has two different precedences. 

2. Only a small class of grammars can be parsed. 

3. The relationship between a grammar for the language being parsed and the operator- 

precedence parser itself is tenuous, one cannot always be sure the parser accepts exactly the 

desired language. 

Disadvantages: 

1. L(G) L(parser) 

2. error detection 

3. usage is limited 

4. They are easy to analyse manually Example: 

Grammar: EEAE|(E)|-E/id 

A+|-|*|/| 

Input string: id+id*id 

The operator – precedence relations are: 
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 Id + * $ 

Id  .> .> .> 

+ <. .> <. .> 

* <. .> .> .> 

$ <. <. <.  

Solution: This is not operator grammar, so first reduce it to operator grammar form, by 

eliminating adjacent non-terminals. 

Operator grammar is: 

EE+E|E-E|E*E|E/E|EE|(E)|-E|id 

The input string with precedence relations interested is: 

$<.id.> + <.id.> * <.id.> $ 

Scan the string the from left end until first .> is encounted. 

$<.id.>+<.id.>*<.id.<$ 

This occurs between the first id and +. 

 
Scan backwards (to the left) over any =’s until a <. Is encounted. We scan backwards to $. 

$<.id.>+<.id.>*<.id.>$ 

 

Everything to the left of the first .> and to the right of <. Is called handle. Here, the handle is the first 

id. 

Then reduce id to E. At this point we have: E+id*id 

 
By repeating the process and proceding in the same way: $+<.id.>*<.id.>$ 

substitute Eid, 

After reducing the other id to E by the same process, we obtain the right-sentential form 

 
E+E*E 

Now, the 1/p string afte detecting the non-terminals sis: 

 $+*$ 
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Inserting the precedence relations, we get: $<.+<.*.>$ 

 

The left end of the handle lies between + and * and the right end between * and $. It indicates that, in 

the right sentential form E+E*E, the handle is E*E. 

Reducing by EE*E, we get: 

 
E+E 

 

Now the input string is: $<.+$ 

Again inserting the precedence relations, we get: 

$<.+.>$ 

 

reducing by EE+E, we get, 

$ $ 

and finally we are left with: 

 
E 

Hence accepted. 
 

Input string Precedence relations Action 

inserted 

id+id*id $<.id.>+<.id.>*<.id.>$  

E+id*id $+<.id.>*<.id.>$ Eid 

E+E*id $+*<.id.>$ Eid 

E+E*E $+*$  

E+E*E $<.+<.*.>$ EE*E 

E+E $<.+$  

E+E $<.+.>$ EE+E 

E $$ Accepted 
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5. LR PARSING INTRODUCTION: 

The "L" is for left-to-right scanning of the input and the "R" is for constructing a 

rightmost derivation in reverse. 

 

 

WHY LR PARSING: 

1. LR parsers can be constructed to recognize virtually all programming-language 

constructs for which context-free grammars can be written. 

 
2. The LR parsing method is the most general non-backtracking shift-reduce parsing 

method known, yet it can be implemented as 

efficiently as other shift-reduce methods. 

3. The class of grammars that can be parsed using LR methods is a proper subset of the 

class of grammars that can be parsed with predictive parsers. 

4. An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to- 

right scan of the input. 

The disadvantage is that it takes too much work to constuct an LR parser by hand for a typical 

programming-language grammar. But there are lots of LR parser generators available to make this 

task easy. 
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LR PARSERS: 
 

LR(k) parsers are most general non-backtracking shift-reduce parsers. Two cases of interest are k=0 

and k=1. LR(1) is of practical relevance 

 
‘L’ stands for “Left-to-right” scan of input. 

‘R’ stands for “Rightmost derivation (in reverse)”. 

 
‘K’ stands for number of input symbols of look-a-head that are used in making parsing decisions. 

When (K) is omitted, ‘K’ is assumed to be 1. 

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for 

handle recognition. 

LR(1) parsers recognize languages that have an LR(1) grammar. A grammar is LR(1) if, given a 

right-most derivation 

 

Sr0r1r2- - - rn-1rnsentence. 

We can isolate the handle of each right-sentential form ri and determine the production by which to 

reduce, by scanning ri from left-to-right, going atmost 1 symbol beyond the right end of the handle of 

ri. 

Parser accepts input when stack contains only the start symbol and no remaining input symbol are 

left. 

LR(0) item: (no lookahead) 

Grammar rule combined with a dot that indicates a position in its RHS. 

Ex– 1: S
I 
 .S$ S.x S.(L) 

Ex-2: AXYZ generates 4LR(0) items – 

 
A.XYZ 

AX.YZ 

AXY.Z 

AXYZ. 

The ‘.’ Indicates how much of an item we have seen at a given state in the parse. 

A.XYZ indicates that the parser is looking for a string that can be derived from XYZ. 
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AXY.Z indicates that the parser has seen a string derived from XY and is looking for one 

derivable from Z. 

 LR(0) items play a key role in the SLR(1) table construction algorithm. 

 LR(1) items play a key role in the LR(1) and LALR(1) table construction algorithms. LR 

parsers have more information available than LL parsers when choosing a production: 

* LR knows everything derived from RHS plus ‘K’ lookahead symbols. 

* LL just knows ‘K’ lookahead symbols into what’s derived from RHS. 

Deterministic context free languages: 

 
 

LR PARSING ALGORITHM: 

The schematic form of an LR parser is shown below: 

INPUT a1 

 

 

Out put 

LR (1) languages 

Preccdence 

Languages LL 

languages 

STACK 

Sm 

Xm 

Sm-1 

Xm-1 

goto Action 

LR 

Parsing Program 

…… ai …… an   
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It consists of an input, an output, a stack, a driver program, and a parsing table that has two parts: 

action and goto. 

The LR parser program determines Sm, the current state on the top of the stack, and ai, the current 

input symbol. It then consults action [Sm, ai], which can have one of four values: 

1. Shift S, where S is a state. 

2. reduce by a grammar production A

3. accept and 

4. error 

The function goes to takes a state and grammar symbol as arguments and produces a state. 

The goto function of a parsing table constructed from a grammar G using the SLR, canonical LR or 

LALR method is the transition function of DFA that recognizes the viable prefixes of G. (Viable 

prefixes of G are those prefixes of right-sentential forms that can appear on the stack of a shift-reduce 

parser, because they do not extend past the right-most handle) 

 

5.6 AUGMENTED GRAMMAR: 

If G is a grammar with start symbol S, then G
I
, the augmented grammar for G with a new 

start symbol S
I 
and production S

I
S. 

The purpose of this new start stating production is to indicate to the parser when it should stop 

parsing and announce acceptance of the input i.e., acceptance occurs when and only when the parser 

is about to reduce by S
I
S. 

CONSTRUCTION OF SLR PARSING TABLE: 

Example: 

The given grammar is: 

1. EE+T 

2. E T 

3. T T*F 

4. TF 

5.       F(E) 

6. Fid Step I: The Augmented grammar is: 
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E
I
E 

 

EE+T 

ET 

TT*F 

TF 

F(E) 

Fid 
 

Step II: The collection of LR (0) items are: 

I0: E
I
.E 

E.E+T 

E.T 

T.T*F 

T.F 

F.(E) 

F.id 

Start with start symbol after since ( ) there is E, start writing all productions of E. 

Start writing ‘T’ productions 

Start writing F productions 

Goto (I0,E): 

 
the 

States have successor states formed by advancing the marker over the symbol it 

preceeds. For state 1 there are successor states reached by advancing the masks over 

E IE. - 
symbols E,T,F,C or id. Consider, first, the 

I1: reduced Item(RI) 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

EE.+T 

Goto (I0,T): 

I2: ET. - reduced Item (RI) 
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TT.*F 

Goto (I0,F): 

I2: ET. - reduced item (RI) 

 
TT.*F 

Goto (I0,C): 

 

I4: F(.E) 

 
E.E+T 

E.T 

T.T*F 

T.F 

F.(E) 

F.id 

 
If ‘.’ Precedes non-terminal start writing its corresponding production. Here first E then T after that 

F. 

Start writing F productions. 

Goto (I0,id): 

I5: F id. - reduced item. 

E successor (I, state), it contains two items derived from state 1 and the closure operation adds no 

more (since neither marker precedes a non-terminal). The state I2 is thus: 

Goto (I1,+): 

I6: EE+.T start writing T productions 

 
T.T*F 

T.F start writing F productions 

F.(E) 

F.id 
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Goto (I2,*): 

I7: TT*.F start writing F productions 

 
F.(E) 

 
F.id 

Goto (I4,E): 

 
I8: F(E.) 

 
EE.+T 

Goto (I4,T): 

I2: ET. these are same as I2. 

 
TT.*F 

Goto (I4,C): 

 

I4: F(.E) 

 
E.E+T 

E.T 

T.T*F 

T.F 

F.(E) 

F.id 
 
 

goto (I4,id): 

I5: Fid. - reduced item 

Goto (I6,T): 

I9: EE+T. - reduced item 
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TT.*F 

Goto (I6,F): 

I3: TF. - reduced item Goto (I6,C): 

 

 
I4: F(.E) 

 
E.E+T 

E.T 

T.T*F 

T.F 

F.(E) 

F.id 
 
 

Goto (I6,id): 

I5: Fid. reduced item. 

Goto (I7,F): 

I10: TT*F reduced item 

Goto (I7,C):  

I4: F(.E) 
 

 
E.E+T 

E.T 

T.T*F 

T.F 

F.(E) 

F.id 

 
Goto (I7,id): 

I5: Fid. - reduced item 
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Goto (I8,)): 

I11: F(E). reduced item 

Goto (I8,+): 

I11: F(E). reduced item 

Goto (I8,+):  

I6: EE+.T 
 

 

T.T*F 

T.F 

F.(E) 

F.id 

 
Goto (I9,+): 

I7: TT*.f 

 
F.(E) 

 
F.id 

Step IV: Construction of Parse table: 

 
Construction must proceed according to the algorithm 4.8 

Sshift items 

Rreduce items 

Initially E
I
E. is in I1 so, I = 1. 

Set action [I, $] to accept i.e., action [1, $] to Acc 
 

Action         Goto 

State Id + * ( ) $ E T F 

I0 S5   S4   1 2 3 

1  S6    Accept    

2  r2 S7  R2 R2    
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3  R 4 R 4  R4 R4    

4 S5   S4     3 

5  R 6 R 6  R6 R6    

6 S5   S4     3 

7 S5   S4     10 

8  S 6   S11     

9  R1 S7  r1 r1    

10  R3 R3  R3 R3    

11  R5 R5  R5 R5    

As there are no multiply defined entries, the grammar is SLR®. 
 

STEP – III Finding FOLLOW ( ) set for all non-terminals. 

Relevant production 

FOLLOW (E) = {$} U FIRST (+T) U FIRST ( ) ) E
E

/B + 
T

/B 

= {+, ), $} F(E) 

B

FOLLOW (T) = FOLLOW (E) U ET 

FIRST (*F) U TT*F 

FOLLOW (E) EE+T 

B 

= {+,*,),$} 

FOLLOW (F) = FOLLOW (T) 

= {*,*,),$} 

Step – V: 

1. Consider I0: 

1. The item F.(E) gives rise to goto (I0,C) = I4, then action [0,C] = shift 4 

2. The item F.id gies rise goto (I0,id) = I4, then action [0,id] = shift 5 

 
the other items in I0 yield no actions. Goto (I0,E) = I1 then goto [0,E] = 1 
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Goto (I0,T) = I2 then goto [0,T] = 2 

Goto (I0,F) = I3 then goto [0,F] = 3 

2. Consider I1: 

1. The item E
I
E. is the reduced item, so I = 1 This gives rise to 

action [1,$] to accept. 
 

2. The item EE.+T gives rise to 

 
goto (I1,+)=I6, then action [1,+] = shift 6. 

 

3. Consider I2: 

1. The item ET. is the reduced item, so take FOLLOW (E), 

FOLLOW (E) = {+,),$} 

The first item +, makes action [Z,+] = reduce ET. ET is production 

rule no.2. So action [Z,+] = reduce 2. 

The second item, makes action [Z,)] = reduce 2 The third item $, makes 

action [Z,$] = reduce 2 

2. The item TT.*F gives rise to 

 
goto [I2,*]=I7, then action [Z,*] = shift 7. 

 

4. Consider I3: 

 
1. TF. is the reduced item, so take FOLLOW (T). 

 
FOLLOW (T) = {+,*,),$} 

 
So, make action [3,+] = reduce 4 

 

 
Action [3,*] = reduce 4 

Action [3,)] = reduce 4 

 

Action [3,$] = reduce 4 
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In forming item sets a closure operation must be performed to ensure that whenever the marker in 

an item of a set precedes a non-terminal, say E, then initial items must be included in the set for all 

productions with E on the left hand side. 

The first item set is formed by taking initial item for the start state and then performing the 

closure operation, giving the item set; 

We construct the action and goto as follows: 

1. If there is a transition from state I to state J under the terminal symbol K, then set 

action [I,k] to SJ. 

2. If there is a transition under a non-terminal symbol a, say from state ‘i’ to state‘J’, 

set goto [I,A] to SJ. 

3. If state I contains a transition under $ set action [I,$] to accept. 

4. If there is a reduce transition #p from state I, set action [I,k] to reduce #p for all 

terminals k belonging to FOLLOW (A) where A is the subject to production #P. 

If any entry is multiply defined then the grammar is not SLR(1). Blank entries are represented by 

dash (-). 

5. Consider I4 items: 

The item Fid gives rise to goto [I4,id] = I5 so, 

Action (4,id)  shift 5 

The item F.E action (4,c) shift 4 

The item goto (I4,F)  I3, so goto [4,F] = 3 

The item goto (I4,T)  I2, so goto [4,F] = 2 

The item goto (I4,E)  I8, so goto [4,F] = 8 

6. Consider I5 items: 

Fid. Is the reduced item, so take FOLLOW (F). 

 
FOLLOW (F) = {+,*,),$} 

 

Fid is rule no.6 so reduce 6 

Action (5,+) = reduce 6 

Action (5,*) = reduce 6 

Action (5,)) = reduce 6 

Action (5,)) = reduce 6 
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Action (5,$) = reduce 6 

7. Consider I6 items: 

goto (I6,T) = I9, then goto [6,T] = 9 goto (I6,F) = I3, then 

goto [6,F] = 3 goto (I6,C) = I4, then goto [6,C] = 4 goto 

(I6,id) = I5, then goto [6,id] = 5 

8. Consider I7 items: 

1. goto (I7,F) = I10, then goto [7,F] = 10 

2. goto (I7,C) = I4, then action [7,C] = shift 4 

3. goto (I7,id) = I5, then goto [7,id] = shift 5 

 
9. Consider I8 items: 

1. goto (I8,)) = I11, then action [8,)] = shift 11 

2. goto (I8,+) = I6, then action [8,+] = shift 6 

 
10. Consider I9 items: 

1. EE+T. is the reduced item, so take FOLLOW (E). 

 
FOLLOW (E) = {+,),$} 

EE+T is the production no.1., so 

Action [9,+] = reduce 1 

Action [9,)] = reduce 1 

Action [9,$] = reduce 1 

2. goto [I5,*] = I7, then acgtion [9,*] = shift 7. 

11. Consider I10 items: 

1. TT*F. is the reduced item, so take 

 
FOLLOW (T) = {+,*,),$} 

TT*F is production no.3., so 

Action [10,+] = reduce 3 

Action [10,*] = reduce 3 

Action [10,)] = reduce 3 

Action [10,$] = reduce 3 



65 

 

 

12. Consider I11 items: 

1. F(E). is the reduced item, so take 

 
FOLLOW (F) = {+,*,),$} 

F(E) is production no.5., so 

Action [11,+] = reduce 5 

Action [11,*] = reduce 5 

Action [11,)] = reduce 5 

Action [11,$] = reduce 5 

 

VI MOVES OF LR PARSER ON id*id+id:  

 STACK INPUT ACTION 

1. 0 id*id+id$ shift by S5 

2. 0id5 *id+id$ sec 5 on * 

   reduce by Fid 

   If A

   Pop 2*| | symbols. 
 

=2*1=2 symbols. 

Pop 2 symbols off the stack 

State 0 is then exposed on F. 
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   Since goto of state 0 on F is 

   3, F and 3 are pushed onto 

   the stack 

3. 0F3 *id+id$ reduce by T F 

   pop 2 symbols push T. Since 

   goto of state 0 on T is 2, T 

   and 2, T and 2 are pushed 

   onto the stack. 

4. 0T2 *id+id$ shift by S7 

5. 0T2*7 id+id$ shift by S5 

6. 0T2*7id5 +id$ reduce by r6 i.e. 

   F id 

   Pop 2 symbols, 

   Append F, 

   Secn 7 on F, it is 10 

7. 0T2*7F10 +id$ reduce by r3, i.e., 

   T T*F 

   Pop 6 symbols, push T 

   Sec 0 on T, it is 2 

   Push 2 on stack. 

8. 0T2 +id$ reduce by r2, i.e., 

   E T 

   Pop two symbols, 

   Push E 

   See 0 on E. It 10 1 

   Push 1 on stack 

9. 0E1 +id$ shift by S6. 

10. 0E1+6 id$ shift by S5 

11. 0E1+6id5 $ reduce by r6 i.e., 
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  F id 

  Pop 2 symbols, push F, see 6 

 on F  

  It is 3, push 3 

0E1+6F3 $ reduce by r4, i.e., 

  T F 

  Pop2 symbols, 

  Push T, see 6 on T 

  It is 9, push 9. 

0E1+6T9 $ reduce by r1, i.e., 

  E E+T 

  Pop 6 symbols, push E 

  See 0 on E, it is 1 

  Push 1. 

0E1 $ Accept 
 

 

 

 

 

 

Procedure for Step-V 
 

The parsing algorithm used for all LR methods uses a stack that contains alternatively state 

numbers and symbols from the grammar and a list of input terminal symbols terminated by $. For 

example: 

 

AAbBcCdDeEf/uvwxyz$ 

Where, a ...... f are state numbers 

A . . .. E are grammar symbols (either terminal or non-terminals) u ...... z are the terminal symbols of 

the text still to be parsed. The parsing algorithm starts in state I0 with the configuration – 
 

0 / whole program upto $. 

 
Repeatedly apply the following rules until either a syntactic error is found or the parse is complete. 

(i) If action [f,4] = Si then transform aAbBcCdDeEf / uvwxyz$ 
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to aAbBcCdDeEfui / vwxyz$ This is called a SHIFT transition 

(ii) If action [f,4] = #P and production # P is of length 3, say, then it will be of the form P 

 CDE where CDE exactly matches the top three symbols on the stack, and P is some non- 

terminal, then assuming goto [C,P] = g 

aAbBcCdDEfui / vwxyz$ will transform to 

aAbBcPg / vwxyz$ 

The symbols in the stack corresponding to the right hand side of the production have been replaced 

by the subject of the production and a new state chosen using the goto table. This is called a 

REDUCE transition. 

(iii) If action [f,u] = accept. Parsing is completed 

(iv) If action [f,u] = - then the text parsed is syntactically in-correct. 

Canonical LR(O) collection for a grammar can be constructed by augmented grammar and two 

functions, closure and goto. 

The closure operation: 

If I is the set of items for a grammar G, then closure (I) is the set of items constructed from I by the 

two rules: 

i) initially, every item in I is added to closure (I). 

CANONICAL LR PARSING: 

Example: 

 

S  CC 

C CC/d. 

1. Number the grammar productions: 

1. S CC 

2. C CC 

3. C d 

 
2. The Augmented grammar is: 

 

S
I 
S 

S CC 

C CC 
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C d. 

 
Constructing the sets of LR(1) items: 

We begin with: 

S
I 
.S,$ begin with look-a-head (LAH) as $. 

We match the item [S
I 
.S,$] with the term [A .B,a] 

In the procedure closure, i.e., 

A = S
I 

 = 

B = S 
 

 =  a = $ 

Function closure tells us to add [B.r,b] for each production Br and terminal b in FIRST (a). 

Now r must be SCC, and since  is  and a is $, b may only be $. Thus, 

S.CC,$ 

 

We continue to compute the closure by adding all items [C.r,b] for b in FIRST [C$] i.e., matching 

[S.CC,$] against [A.B,a] we have, A=S, =, B=C and a=$. FIRST (C$) = FIRST © 

FIRST© = {c,d} We add items: 

C.cC,C 

CcC,d 

C.d,c 

C.d,d 

 
None of the new items have a non-terminal immediately to the right of the dot, so we have completed 

our first set of LR(1) items. The initial I0 items are: 

I0 : S
I
.S,$ S.CC,$ C.CC,c/d C.d.c/d 

 

Now we start computing goto (I0,X) for various non-terminals i.e., Goto (I0,S): 
 

I1 : S
I
S.,$  reduced item. 

Goto (I0,C    
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I2 : SC.C, $ 

C.cC,$ 

C.d,$ 

Goto (I0,C :   

I2 : Cc.C,c/d 

  C.cC,c/d 

  C.d,c/d 
 

 
Goto (I0,d)   

I4 Cd., c/d reduced item. 

Goto (I2,C) I5 
 

 SCC.,$  reduced item. 

Goto (I2,C) I6  
 

 Cc.C,$  

 C.cC,$  

 C.d,$  

Goto (I2,d) I7 
 

 Cd.,$  reduced item. 

Goto (I3,C) I8 
 

 CcC.,c/d  reduced item. 

Goto (I3,C) I3 
 

 Cc.C, c/d  

 C.cC,c/d  

 
C.d,c/d 

 

Goto (I3,d) I4 
 

 Cd.,c/d.  reduced item. 

Goto (I6,C) I9 
 

 CcC.,$  reduced item. 

Goto (I6,C) I6 
 

 Cc.C,$  

 C,cC,$  
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 C.d,$  

Goto (I6,d) I7  
 

Cd.,$  reduced item. 

All are completely reduced. So now we construct the canonical LR(1) parsing table – 

Here there is no neet to find FOLLOW ( ) set, as we have already taken look-a-head for each 

set of productions while constructing the states. 

 
 

Constructing LR(1) Parsing table: 
 

 Action goto 

State C D $ S C 

I0 S3 S4  1 2 

1   Accept   

2 S6 S7   5 

3 S3 S4   8 

4 R3 R3    

5   R1   

6 S6 S7   9 

7   R3   

8 R2 R2    

9   R2   

1. Consider I0 items: 
 

The item S.S.$ gives rise to goto [I0,S] = I1 so goto [0,s] = 1. 

The item S.CC, $ gives rise to goto [I0,C] = I2 so goto [0,C] = 2. 

The item C.cC, c/d gives rise to goto [I0,C] = I3 so goto [0,C] = shift 3 

The item C.d, c/d gives rise to goto [I0,d] = I4 so goto [0,d] = shift 4 

2. Consider I0 items: 

The item S
I
S.,$ is in I1, then set action [1,$] = accept 

3. Consider I2 items: 

The item SC.C,$ gives rise to goto [I2,C] = I5. so goto [2,C] = 5 

The item C.cC, $ gives rise to goto [I2,C] = I6. so action [0,C] = shift The item C.d,$ gives rise 
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to goto [I2,d] = I7. so action [2,d] = shift 7 

4. Consider I3 items: 

The item C.cC, c/d gives rise to goto [I3,C] = I8. so goto [3,C] = 8 

The item C.cC, c/d gives rise to goto [I3,C] = I3. so action [3,C] = shift 3. The item C.d, c/d 

gives rise to goto [I3,d] = I4. so action [3,d] = shift 4. 

 
5. Consider I4 items: 

The item C.d, c/d is the reduced item, it is in I4 so set action [4,c/d] to reduce cd. (production 

rule no.3) 

6. Consider I5 items: 

The item SCC.,$ is the reduced item, it is in I5 so set action [5,$] to SCC (production rule no.1) 

7. Consider I6 items: 

The item Cc.C,$ gives rise to goto [I6 ,C] = I9. so goto [6,C] = 9 

The item C.cC,$ gives rise to goto [I6 ,C] = I6. so action [6,C] = shift 6 

The item C.d,$ gives rise to goto [I6 ,d] = I7. so action [6,d] = shift 7 

8. Consider I7 items: 

The item Cd., $ is the reduced item, it is in I7. 
 

So set action [7,$] to reduce Cd (production no.3) 

 

9. Consider I8 items: 

The item CCC.c/d in the reduced item, It is in Is, so set action[8,c/d] to reduce Ccd 

(production rale no .2) 

10. Consider I9 items: 

 
The item C cC, $ is the reduced item, It is in I9, so set action [9,$] to reduce CcC 

(Production rale no.2) 

 

If the Parsing action table has no multiply –defined entries, then the given grammar is called as 

LR(1) grammar 

 
LALR PARSING: 

 

Example: 
 

1. Construct C={I0,I1,… ........ ,In} The collection of sets of LR(1) items 
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2. For each core present among the set of LR (1) items, find all sets having that core, and 

replace there sets by their Union# (clus them into a single term) 

I0 same as previous 

I1  “ 

I2  “ 
 

I36 – Clubbing item I3 and I6 into one I36 item. 

C cC,c/d/$ 

CcC,c/d/$ 

Cd,c/d/$ 
 

I5 some as previous 

I47 Cd,c/d/$ 

I89 CcC, c/d/$ 

 

LALR Parsing table construction: 
 

 

State 
Action Goto 

c d   C 

Io S36 S47   2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 r3 r3    

5   r1   

89 r2 r2 r2   
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Parser Static 

checker 

Intermediate 

code generator 

Code 

generator 

UNIT-III 

SEMANTIC ANALYSIS 

 

Intermediate Code Generation 
 

1. Intermediate code forms: 

 
An intermediate code form of source program is an internal form of a program created by the 

compiler while translating the program created by the compiler while translating the program 

from a high –level language to assembly code(or)object code(machine code).an intermediate 

source form represents a more attractive form of target code than does assembly. An optimizing 

Compiler performs optimizations on the intermediate source form and produces an object 

module. 
 

Analysis + syntheses=translation 

 

 

Creates an generate 

targe code Intermediate code 

In the analysis –synthesis model of a compiler, the front-end translates a source program 
into an intermediate representation from which the back-end generates target code, in many 
compilers the source code is translated into a language which is intermediate in complexity 
between a HLL and machine code .the usual intermediate code introduces symbols to stand for 
various temporary quantities. 

 
 

 

position of intermediate code generator 

 
We assume that the source program has already been parsed and statically checked.. the various 
intermediate code forms are: 

 

a) Polish notation 

b) Abstract syntax trees(or)syntax trees 

c) Quadruples 

d) Triples three address code 

e) Indirect triples 

f) Abstract machine code(or)pseudocopde a. postfix notation: 
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The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. the 

postfix (or postfix polish)notation for the same expression places the operator at the right end, as ab+. 

 
In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2 is 

indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation because the 

position and priority (number of arguments) of the operators permits only one way to decode a 

postfix expression. 

Example: 

1. (a+b)*c in postfix notation is ab+c*,since ab+ represents the infix expression(a+b). 
 

2. a*(b+c)is abc+* in postfix. 
 

3. (a+b)*(c+d) is ab+cd+* in postfix. 

 
Postfix notation can be generalized to k-ary operators for any k>=1.if k-ary operator Ø is applied to 

postfix expression e1,e2,……….ek, then the result is denoted by e1e2…….ek Ø. if we know the 

priority of each operator then we can uniquely decipher any postfix expression by scanning it from 

either end. 

Example: 

Consider the postfix string ab+c*. 

 
The right hand * says that there are two arguments to its left. since the next –to-rightmost symbol is 

c, simple operand, we know c must be the second operand of *.continuing to the left, we encounter 

the operator +.we know the sub expression ending in + makes up the first operand of 

*.continuing in this way ,we deduce that ab+c* is “parsed” as (((a,b)+),c)*. 
 

b. syntax tree: 

 
The parse tree itself is a useful intermediate-language representation for a source program, 

especially in optimizing compilers where the intermediate code needs to extensively restructure. 

 
A parse tree, however, often contains redundant information which can be eliminated, Thus 

producing a more economical representation of the source program. One such variant of a parse tree 

is what is called an (abstract) syntax tree, a tree in which each leaf represents an operand and each 

interior node an operator. 
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/ 

 

Exmples: 
 

1) Syntax tree for the expression a*(b+c)/d 
 

 
 

d 
 

a 
 

b c 
 

2) syntax tree for if a=b then a:=c+d else b:=c-d 

 

 

If---then---else 
 

 

 

 

 

d 
 

Three-Address Code: 

• In three-address code, there is at most one operator on the right side of aninstruction; that is, no 
built-up arithmetic expressions are permitted. 

x+y*z t1 = y * z t2 = x + t1 

• Example 

 

= := 

a b a + - 

c d 

+ 
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Problems: 

Write the 3-address code for the following expression 

1. if(x + y * z > x * y +z) a=0; 

2. (2 + a * (b – c / d)) / e 
3. A :=b * -c + b * -c 

 

Address and Instructions 

• 

• Example Three-address code is built from two concepts: addresses and instructions. 

• An address can be one of the following: 

– A name: A source name is replaced by a pointer to its symbol table entry. 

• A name: For convenience, allow source-program names to Appear as addresses in three-address 
code. In an Implementation, a source name is replaced by a pointer to 
its symbol-table entry, where all information about the name is kept. 

– A constant 

• A constant: In practice, a compiler must deal with many different types of constants and variables 

– A compiler-generated temporary 

• A compiler-generated temporary. It is useful, especially in optimizing compilers, to create a 
distinct name each time a temporary is needed. These temporaries can be combined, if possible, when 
registers are allocated to variables. 

A list of common three-address instruction forms: Assignment statements 

– x= y op z, where op is a binary operation 

– x= op y, where op is a unary operation 

– Copy statement: x=y 

– Indexed assignments: x=y[i] and x[i]=y 

– Pointer assignments: x=&y, *x=y and x=*y 

Control flow statements 

– Unconditional jump: goto L 

– Conditional jump: if x relop y goto L ; if x goto L; if False x goto L 

– Procedure calls: call procedure p with n parameters and return y, is Optional 

param x1 param x2 

… 

param xn call p, n 

 

– do i = i +1; while (a[i]<v); 
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The multiplication i * 8 is appropriate for an array of elements that each take 8 units of space. 

 
C. quadruples: 

• Three-address instructions can be implemented as objects or as record with fields for the operator 
and operands. 
• Three such representations 

– Quadruple, triples, and indirect triples 

• A quadruple (or quad) has four fields: op, arg1, arg2, and result. 

Example D. Triples 

• A triple has only three fields: op, arg1, and arg2 

• Using triples, we refer to the result of an operation x op y by its position, rather by an explicit 
temporary name. 

Example 
 

 

 

 
d. Triples: 

• A triple has only three fields: op, arg1, and arg2 
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• Using triples, we refer to the result of an operation x op y by its position, rather by an explicit 
temporary name. 

Example 

Fig: Representations of a = b * - c + b * - c 
 
 

Fig: Indirect triples representation of 3-address code 

-> The benefit of Quadruples over Triples can be seen in an optimizing compiler, where 
instructions are often moved around. 

->With quadruples, if we move an instruction that computes a temporary t, then the instructions 
that use t require no change. With triples, the result of an operation is referred to by its position, so 
moving an instruction may require changing all references to that result. This problem does not 
occur with indirect triples. 

 

Single-Assignment Static Form 

Static single assignment form (SSA) is an intermediate representation that facilitates certain code 
optimization. 
• Two distinct aspects distinguish SSA from three –address code. 
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– All assignments in SSA are to variables with distinct names; hence the term static single- 
assignment. 

 

 
 

2. Type Checking: 

•A compiler has to do semantic checks in addition to syntactic checks. •Semantic Checks 
 

–Static –done during compilation 
 

–Dynamic –done during run-time 
 

• Type checking is one of these static checking operations. 
 

–we may not do all type checking at compile-time. 
 

–Some systems also use dynamic type checking too. 
 

•A type system is a collection of rules for assigning type expressions to the parts of a program. 
 

•A type checker implements a type system. 
 

•A sound type system eliminates run-time type checking for type errors. 
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•A programming language is strongly-typed, if every program its compiler accepts will execute 
without type errors. 

 
In practice, some of type checking operations is done at run-time (so, most of the programming 
languages are not strongly yped). 

 
 
 

Type Expression: 
The type of a language construct is denoted by a type expression. 

A type expression can be: 

A basic type a primitive data type such as integer, real, char, Boolean, … 

type-error to signal a type error void: no type 

A type name a name can be used to denote a type expression. 

A type constructor applies to other type expressions. 

• arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index range. 
Ex: array (0..99,int) 

 
• products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type 
expression. Ex: int x int 

 

• pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer (int) 

 
• functions: We may treat functions in a programming language as mapping from a domain type D to 

a range type R. So, the type of a function can be denoted by the type expression D→R where D are R 

type expressions. Ex: int→int represents the type of a function which takes an int value as parameter, 

and its return type is also int. 

Type Checking of Statements: 

S ->d= E { if (id.type=E.type then S.type=void 

else S.type=type-error } 
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S ->if E then S1 { if (E.type=boolean then S.type=S1.type 

else S.type=type-error } 

S->while E do S1 { if (E.type=boolean then S.type=S1.type 

else S.type=type-error } 

 

Structural Equivalence of Type Expressions: 
 

•How do we know that two type expressions are equal? 

 
•As long as type expressions are built from basic types (no type names), we may use structural 
equivalence between two type expressions 

 

 

Structural Equivalence Algorithm (sequin): 

if (s and t are same basic types) then return true 

 
else if (s=array(s1,s2) and t=array(t1,t2)) then return (sequiv(s1,t1) and sequiv(s2,t2)) else if (s = s1 x 

s2and t = t1 x t2) then return (sequiv(s1,t1) and sequiv(s2,t2)) 

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1)) 
 

else if (s = s1 else return false 

Type Checking of Functions: 

E->E1( E2)  { 

  
else E.type=type-error } 

Ex: int f(double x, char y) { ... } 

f: double x char->int 

argume types return type 
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Names for Type Expressions: 

 
• In some programming languages, we give a name to a type expression, and we use that name as a 
type expression afterwards. 

 
type link = ↑cell; ? p,q,r,s have same types ? var p,q : link; 

 

 
var r,s : ↑cell 

 

•How do we treat type names? 
 

–Get equivalent type expression for a type name (then use structural equivalence), or 
 

–Treat a type name as a basic type 
 

3. Syntax Directed Translation: 

 
A formalist called as syntax directed definition is used fort specifying translations for 
programming language constructs. 

A syntax directed definition is a generalization of a context free grammar in which each 

grammar symbol has associated set of attributes and each and each productions is associated 

with a set of semantic rules 
 

Definition of (syntax Directed definition ) SDD : 

 
SDD is a generalization of CFG in which each grammar productions X->α is associated with it a set 
of semantic rules of the form 

 

a: = f(b1,b2…..bk) 
 

Where a is an attributes obtained from the function f. 
 

• A syntax-directed definition is a generalization of a context-free grammar in which: 
 

– Each grammar symbol is associated with a set of attributes. 

 

– This set of attributes for a grammar symbol is partitioned into two subsets called synthesized and 

inherited attributes of that grammar symbol. 
 

– Each production rule is associated with a set of semantic rules. 

 
• Semantic rules set up dependencies between attributes which can be represented by a dependency 
graph. 
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• This dependency graph determines the evaluation order of these semantic rules. 

 
• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may also have 
some side effects such as printing a value. 

The two attributes for non terminal are : 
 

1) Synthesized attribute (S-attribute) : (↑) 

 
An attribute is said to be synthesized attribute if its value at a parse tree node is determined from 
attribute values at the children of the node 

 

2) Inherited attribute: (↑,→) 

 
An inherited attribute is one whose value at parse tree node is determined in terms of attributes at the 
parent and | or siblings of that node. 

 

 The attribute can be string, a number, a type, a, memory location or anything else. 

 The parse tree showing the value of attributes at each node is called an annotated parse tree. 

 
The process of computing the attribute values at the node is called annotating or decorating the parse 
tree.Terminals can have synthesized attributes, but not inherited attributes. 

 

Annotated Parse Tree 

• A parse tree showing the values of attributes at each node is called an Annotated parse tree. 

 
• The process of computing the attributes values at the nodes is called annotating (or decorating) of 
the parse tree. 

 
• Of course, the order of these computations depends on the dependency graph induced by the 
semantic rules. 

Ex1:1) Synthesized Attributes : Ex: Consider the CFG : 

S→ EN E→ E+T E→E-T E→ T T→ T*F T→T/F T→F F→ (E) F→digit N→; 

 

Solution: The syntax directed definition can be written for the above grammar by using semantic 
actions for each production. 
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Production rule Semantic actions 

 
 

S →EN S.val=E.val 

E →E1+T E.val =E1.val + T.val 

E →E1-T E.val = E1.val – T.val 

E →T E.val =T.val 

T →T*F T.val = T.val * F.val 

T →T|F T.val =T.val | F.val 

F → (E) F.val =E.val 

T →F T.val =F.val 

F →digit F.val =digit.lexval 

N →; can be ignored by lexical Analyzer as; I 

is terminating symbol 

 

For the Non-terminals E,T and F the values can be obtained using the attribute “Val”. 

The taken digit has synthesized attribute “lexval”. 

In S→EN, symbol S is the start symbol. This rule is to print the final answer of expressed. 

Following steps are followed to Compute S attributed definition 

1. Write the SDD using the appropriate semantic actions for corresponding production rule of the 
given Grammar. 

 
2. The annotated parse tree is generated and attribute values are computed. The Computation is done 
in bottom up manner. 

 

3. The value obtained at the node is supposed to be final output. 
 

PROBLEM 1: 
 

Consider the string 5*6+7; Construct Syntax tree, parse tree and annotated tree. 
 

Solution: 
 

The corresponding annotated parse tree is shown below for the string 5*6+7; 
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Syntax tree: 
 

 

 
Annotated parse tree : 

 

Advantages: SDDs are more readable and hence useful for specifications 
 

Disadvantages: not very efficient. 
 

Ex2: 

 
PROBLEM : Consider the grammar that is used for Simple desk calculator. Obtain the 

Semantic action and also the annotated parse tree for the string 

3*5+4n. L→En E→E1+T 
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E→T 

T→T1*F 

T→F 

F→ (E) 

F→digit 
 

Solution : 
 

Production rule Semantic actions 

L→En L.val=E.val 
 

E→E1+T E.val=E1.val + T.val 
 

E→T E.val=T.val 
 

T→T1*F T.val=T1.val*F.val 
 

T→F T.val=F.val 
 

F→(E) F.val=E.val 
 

F→digit F.val=digit.lexval 
 

The corresponding annotated parse tree U shown below, for the string 3*5+4n. 
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Dependency Graphs: 

 

Dependency graph and topological sort: 

 For each parse-tree node, say a node labeled by grammar symbol X, the dependency graph 
has a node for each attribute associated with X. 

 If a semantic rule associated with a production p defines the value of synthesized attribute A.b 
in terms of the value of X.c. Then the dependency graph has an edge from X.c to A.b 

 If a semantic rule associated with a production p defines the value of inherited attribute B.c in 
terms of the value X.a. Then , the dependency graph has an edge from X.a to B.c. 

 

Applications of Syntax-Directed Translation 

• Construction of syntax Trees 

– The nodes of the syntax tree are represented by objects with a suitable number of fields. 

– Each object will have an op field that is the label of the node. 

– The objects will have additional fields as follows 

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor function 
Leaf (op, val) creates a leaf object. 

• If nodes are viewed as records, the Leaf returns a pointer to a new record for a leaf. 

• If the node is an interior node, there are as many additional fields as the node has children in the 
syntax tree. A constructor function 
Node takes two or more arguments: 

Node (op , c1,c2,…..ck) creates an object with first field op and k additional fields for the k children 

c1,c2,…..ck 

 

Syntax-Directed Translation Schemes 

A SDT scheme is a context-free grammar with program fragments embedded within production 
bodies .The program fragments are called semantic actions and can appear at any position within the 
production body. 

Any SDT can be implemented by first building a parse tree and then pre-forming the actions in a left- 
to-right depth first order. i.e during preorder traversal. 
The use of SDT’s to implement two important classes of SDD’s 

1. If the grammar is LR parsable, then SDD is S-attributed. 

2. If the grammar is LL parsable, then SDD is L-attributed. 
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Postfix Translation Schemes 

The postfix SDT implements the desk calculator SDD with one change: the action for the first 
production prints the value. As the grammar is LR, and the SDD is S-attributed. 
L →E n {print(E.val);} 
E → E1 + T { E.val = E1.val + T.val } 

E → E1 - T { E.val = E1.val - T.val } 

E → T { E.val = T.val } 

T → T1 * F { T.val = T1.val * F.val } T → F { T.val = F.val } 
F → ( E ) { F.val = E.val } 

F → digit { F.val = digit.lexval } 
 

Symbol table: 

A symbol table is a major data structure used in a compiler: 

Associates attributes with identifiers used in a program. 
For instance, a type attribute is usually associated with each identifier. 

A symbol table is a necessary component. 

Definition (declaration) of identifiers appears once in a 
 program 





Use of identifiers may appear in 

many places of the program text Identifiers and attributes are entered by the analysis phases 

When processing a definition (declaration) of an identifier 
In simple languages with only global variables and implicit declarations: 

 The scanner can enter an identifier into a symbol table if it is not already there 
structured languages with scopes and explicit declarations: 

The parser and/or semantic analyzer enter identifiers and corresponding 

attributes 

Symbol table information is used by the analysis and synthesis phases 

To verify that used identifiers have been defined (declared) 



In block- 





90 NARAYANA ENGINEERING COLEGE | GUDUR 

 

 

 To verify that expressions and assignments are semantically correct – type checking 

To generate intermediate or target code 
 

Symbol Table Interface: 
 

The basic operations defined on a symbol table include: 


allocate – to allocate a new empty symbol table 

 free – to remove all entries and free the storage of a symbol table 

 insert – to insert a name in a symbol table and return a pointer to its entry 

 lookup – to search for a name and return a pointer to its entry 

 set_attribute – to associate an attribute with a given entry 

 get_attribute – to get an attribute associated with a given entry 

 Other operations can be added depending on requirement 

 

For example, a delete operation removes a name previously inserted Some identifiers 

become invisible (out of scope) after exiting a block 

 This interface provides an abstract view of a symbol table. 

 Supports the simultaneous existence of multiple tables 

 Implementation can vary without modifying the interface 
 

Basic Implementation Techniques: 

First consideration is how to insert and lookup names 

Variety of implementation techniques 

Unordered List 
 

Simplest to implement 
 

Implemented as an array or a linked list 

 
Linked list can grow dynamically – alleviates problem of a fixed size array 

Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

Ordered List 

If an array is sorted, it can be searched using binary search – O(log2 n) 

Insertion into a sorted array is expensive – O(n) on average 

Useful when set of names is known in advance – table of reserved words 
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Binary Search Tree 
 

Can grow dynamically 
 

Insertion and lookup are O(log2 n) on average 

Hash Tables and Hash Functions: 

 A hash table is an array with index range: 0 to TableSize – 1 

 Most commonly used data structure to implement symbol tables 

 Insertion and lookup can be made very fast – O(1) 

 A hash function maps an identifier name into a table index 

A hash function, h(name), should depend solely on name 

h(name) should be computed quickly 

h should be uniform and randomizing in distributing names 

All table indices should be mapped with equal probability 

Similar names should not cluster to the same table index. 

 

 
Storage Allocation: 

 Compiler must do the storage allocation and provide access to variables and data 

 Memory management 

Stack allocation 

Heap management 

Garbage collection 

Storage Organization: 
 

 

• Assumes a logical address space 
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 Operating system will later map it to physical addresses, decide how touse cache memory, etc.

• Memory typically divided into areas for 



Program code 

 Other static data storage, including global constants and compilergenerated data

 Stack to support call/return policy for procedures

 Heap to store data that can outlive a call to a procedure

 

 
Static vs. Dynamic Allocation: 

Static: Compile time, Dynamic: Runtime allocation 

Many compilers use some combination of following 

Stack storage: for local variables, parameters and so on 

Heap storage: Data that may outlive the call to the procedure that created it  tack 

allocation is a valid allocation for procedures since procedure calls are nest 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT - IV 
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RUN TIME STORAGE ORGANIZATION 
 

 

 

Activation records 



Procedure calls and returns are usually managed by a run-time stack called the control stack. 

Each live activation has an activation record (sometimes called a frame) 

The root of activation tree is at the bottom of the stack 

The current execution path specifies the content of the stack with the last 

Activation has record in the top of the stack. 

A General Activation Record 
 

Activation Record 

 Temporary values 

  Local data 

 A saved machine status 

 An “access link” A control link 

 Space for the return value of the called function  

 The actual parameters used by the calling procedure 

 Elements in the activation record 

 Temporary values that could not fit into 

registers. 

 Local variables of the procedure. 

 Saved machine status for point at which this procedure called. Includes return 

address and contents of registers to be restored. 

 Access link to activation record of previous block or procedure in lexical 
scope chain. Control link pointing to the activation record of the caller.Space 
for the return value of the function, if any. actual parameters (or they may be 
placed in registers, if possible) 
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Downward-growing stack of activation records: 
 

 

 

 
Designing Calling Sequences: 

 

 Values communicated between caller and callee are generally placed at the beginning of 
callee’s activation record 

 Fixed-length items: are generally placed at the middle 

 Items whose size may not be known early enough: are placed at the end of activation record 

 We must locate the top-of-stack pointer judiciously: a common approach is to have it point to 
the end of fixed length fields 

Access to dynamically allocated arrays: 

 

 

ML:  
ML is a functional language 

Variables are defined, and have their unchangeable values initialized, by a statementof the 
form: 

val (name) = (expression) 

Functions are defined using the syntax: 

fun (name) ( (arguments) ) = (body) 

For function bodies we shall use let-statements of the form: let 
(list of definitions) in (statements) end 
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A version of quick sort, in ML style, using nested functions: 
 

Access links for finding nonlocal data: 
 



96 

 

 

 

Sketch of ML program that uses function-parameters: 
 

    \ 

Actual parameters carry their access link with them: 
 

Maintaining the Display: 
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Memory Manager: 

Two basic functions: 

Allocation 

Deallocation 

Properties of memory managers: 

Space efficiency 

Program efficiency 

Low overhead 

Typical Memory Hierarchy Configurations: 
 

 

 
Locality in Programs: 

The conventional wisdom is that programs spend 90% of their time executing 10% of the code: 



Programs often contain many instructions that are never executed. 
 

Only a small fraction of the code that could be invoked is actually executed in atypical run of the 
program. 

 
The typical program spends most of its time executing innermost loops and tight recursive cycles ina 
program. 
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CODE OPTIMIZATION 
 

1. INTRODUCTION 

 
The code produced by the straight forward compiling algorithms can often be made to run 
faster or take less space, or both. This improvement is achieved by program transformations 
that are traditionally called optimizations. Compilers that apply code-improving 
transformations are called optimizing compilers. 

 

Optimizations are classified into two categories. They are 

Machine independent optimizations: 

Machine dependant optimizations: 

 

Machine independent optimizations: 

 
Machine independent optimizations are program transformations that improve the target code 
without taking into consideration any properties of the target machine. 

 

Machine dependant optimizations: 

 
Machine dependant optimizations are based on register allocation and utilization of special 
machine- instruction sequences. 

 

The criteria for code improvement transformations: 

 
 Simply stated, the best program transformations are those that yield the most benefit for the 

least effort. 

 
 The transformation must preserve the meaning of programs. That is, the optimization must 

not change the output produced by a program for a given input, or cause an error such as 
division by zero, that was not present in the original source program. At all times we take the 
“safe” approach of missing an opportunity to apply a transformation rather than risk changing 
what the program does. 

 
 A transformation must, on the average, speed up programs by a measurable amount. We are 

also interested in reducing the size of the compiled code although the size of the code has less 
importance than it once had. Not every transformation succeeds in improving every program, 
occasionally an “optimization” may slow down a program slightly. 

 

 The transformation must be worth the effort. It does not make sense for a compiler writer 
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to expend the intellectual effort to implement a code improving transformation and to have 
the compiler expend the additional time compiling source programs if this effort is not repaid 
when the target programs are executed. “Peephole” transformations of this kind are simple 
enough and beneficial enough to be included in any compiler. 

 
 Flow analysis is a fundamental prerequisite for many important types of code improvement. 

 Generally control flow analysis precedes data flow analysis. 

 Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA 
constructs such as 

 A transformation of a program is called local if it can be performed by looking only at the 
statements in a basic block; otherwise, it is called global. 

 
 Many transformations can be performed at both the local and global levels. Local 

transformations are usually performed first. 

 

Function-Preserving Transformations 

 
 There are a number of ways in which a compiler can improve a program without changing the 

function it computes. 
 

 The transformations 

 
o Common sub expression elimination, o Copypropagation, 

o Dead-code elimination, and 

o Constant folding, are common examples of such function-preserving transformations. 
The other transformations come up primarily when global optimizations are 
performed. 

 Frequently, a program will include several calculations of the same value, such as an 

offset in an array. Some of the duplicate calculations cannot be avoided by the programmer 
because they lie below the level of detail accessible within the source language. 
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Common Sub expressions elimination: 

 
 An occurrence of an expression E is called a common sub-expression if E was previously 

computed, and the values of variables in E have not changed since the previous 
computation. We can avoid recomputing the expression if we can use the previously 
computed value. 

 

 For example 

t1: =4*i t2: =a [t1] t3: =4*j t4:=4*i t5: =n 

t 6: =b [t 4] +t 5 

 
The above code can be optimized using the common sub-expression elimination as t1: 

=4*i t2: =a [t1] t3: =4*j t5: =n 

t6: =b [t1] +t5 

 
The common sub expression t 4: =4*i is eliminated as its computation is already in t1. 
And value of i is not been changed from definition to use. 

 

Copy Propagation: 

 
Assignments of the form f : = g called copy statements, or copies for short. The idea behind the 
copy-propagation transformation is to use g for f, whenever possible after the copy statement f: = 
g. Copy propagation means use of one variable instead of another. This may not appear to be an 
improvement, but as we shall see it gives us an opportunity to eliminate x. 

 
For example: x=Pi; 

 

…… 

A=x*r* 

r; 

 

The optimization using copy propagation can be done as follows: 

A=Pi*r*r; 

Here the variable x is eliminated 

 
 

Dead-Code Eliminations: 

 
A variable is live at a point in a program if its value can be used subsequently; otherwise, it is 
dead at that point. A related idea is dead or useless code, statements that compute values that 
never get used. While the programmer is unlikely to introduce any dead code intentionally, it 
may appear as the result of previous transformations. An optimization can be done by 
eliminating dead code. 
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Exampl 

e: i=0; 

if(i=1) 

{ 

a=b+5; 

} 

 

Here, ‘if’ statement is dead code because this condition will never get satisfied. 

 

Constant folding: 

 
o We can eliminate both the test and printing from the object code. More generally, 

deducing at compile time that the value of an expression is a constant and using the 
constant instead is known as constant folding. 

 
o One advantage of copy propagation is that it often turns the copy statement into dead 

code. 
 

For example, 

a=3.14157/2 can be replaced by 

a=1.570 there by eliminating a division operation. 

 

Loop Optimizations: 

 
o We now give a brief introduction to a very important place for optimizations, namely 

loops, especially the inner loops where programs tend to spend the bulk of their time. 
The running time of a program may be improved if we decrease the number of 
instructions in an inner loop, even if we increase the amount of code outside that 
loop. 

 
o Three techniques are important for loop optimization: 

code motion, which moves code outside a loop; 

Induction -variable elimination, which we apply to replace variables from inner 

loop. 

Reduction in strength, which replaces and expensive operation by a cheaper 
one, such as a multiplication by an addition. 
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Code Motion: 

 
 An important modification that decreases the amount of code in a loop is code motion. 

This transformation takes an expression that yields the same result independent of the 
number of times a loop  is executed ( a loop-invariant computation) and places the 
expression before the loop. Note that the notion “before the loop” assumes the existence 
of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant 
computation in the following while- statement: 

 
while (i <= limit-2) /* statement does not change Limit*/ Code motion will 
result in the equivalent of 
t= limit-2; 

while (i<=t) /* statement does not change limit or t */ 

 

Induction Variables : 

 

 Loops are usually processed inside out. For example consider the loop around B3. 

 Note that the values of j and t4 remain in lock-step; every time the value of j decreases by 
1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 
induction variables. 

 
 When there are two or more induction variables in a loop, it may be possible to get rid of 

all but one, by the process of induction-variable elimination. For the inner loop around 
B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. 

 However, we can illustrate reduction in strength and illustrate a part of the process of 
induction-variable elimination. Eventually j will be eliminated when the outer loop of B2 
- B5 is considered. 

 

Example: 

As the relationship t 4:=4*j surely holds after such an assignment to t 4 in Fig. and t4 is 
not changed elsewhere in the inner loop around B3, it follows that just after the statement 
j:=j -1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 
4:= 4*j by t4:= t4-4. The only problem is that t 4 does not have a value when we enter 
block B3 for the first time. Since we must maintain the relationship t4=4*j on entry to the 
block B3, we place an initializations of t4 at the end of the block where j itself is 
initialized, shown by the dashed addition to block B1 in second Fig. 

 
The replacement of a multiplication by a subtraction will speed up the object code if multiplication 
takes more time than addition or subtraction, as is the case on many machines. 

 

 

 

 

 

 
Reduction in Strength: 
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 Reduction in strength replaces expensive operations by equivalent cheaper ones on the 
target machine. Certain machine instructions are considerably cheaper than others and 
can often be used as special cases of more expensive operators. 

 
 For example, x² is invariably cheaper to implement as x*x than as a call to an 

exponentiation routine. Fixed-point multiplication or division by a power of two is 
cheaper to implement as a shift. Floating-point division by a constant can be 
implemented as multiplication by a constant, which may be cheaper. 

 

3. OPTIMIZATION OF BASIC BLOCKS 

 

 
There are two types of basic block optimizations. They 

 

are : Structure -Preserving Transformations 

Algebraic Transformations 

 

Structure- Preserving Transformations: 

 

The primary Structure-Preserving Transformation on basic blocks are: 

 Common sub-expression elimination 

 Dead code elimination 

 Renaming of temporary variables 

 Interchange of two independent adjacent statements. 

 
Common sub-expression elimination: 

 
Common sub expressions need not be computed over and over again. Instead they can be 
computed once and kept in store from where it’s referenced when encountered again – of course 
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providing the variable values in the expression still remain constant. 
 

Example: 

a:=b+c b:=a-dc:=b+c d:=a-d 

The 2
nd 

and 4
th 

statements compute the same expression: b+c 

and a-d Basic block can be transformed to 

a:=b+c b:=a-dc:=ad: =b 

 
Dead code elimination: 

 
It’s possible that a large amount of dead (useless) code may exist in the program. This 

might be especially caused when introducing variables and procedures as part of construction or 
error - correction of a program – once declared and defined, one forgets to remove them in case 
they serve no purpose. Eliminating these will definitely optimize the code. 

Renaming of temporary variables: 

 
 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is 

another temporary name, and change all uses of t to u. 
 

 In this we can transform a basic block to its equivalent block called normal-form block. 

 
Interchange of two independent adjacent statements: 

 

Two statements 

t1:=b+c 

t2:=x+y 

can be interchanged or reordered in its computation in the basic block when value of t1 
does not affect the value of t2. 

 

Algebraic Transformations: 

 
 Algebraic identities represent another important class of optimizations on basic blocks. 

This includes simplifying expressions or replacing expensive operation by cheaper ones 
i.e. reduction in strength. 

 
 Another class of related optimizations is constant folding. Here we evaluate constant 

expressions at compile time and replace the constant expressions by their values. Thus 
the expression 2*3.14 would be replaced by 6.28. 

 
 The relational operators <=, >=, <, >, + and = sometimes generate unexpected common 

sub expressions. 
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 Associative laws may also be applied to expose common sub expressions. For example, 
if the source code has the assignments 

 
a :=b+c  

e :=c+d+b 

 

the following intermediate code may be generated: 

 
a :=b+c  

t :=c+d 

 

e :=t+b 

Example: x:=x+0 can be removed 

x:=y**2 can be replaced by a cheaper statement x:=y*y 

 
 The compiler writer should examine the language carefully  to determine 

rearrangements of computations are permitted; since computer arithmetic does 

always obey the algebraic identities of mathematics. Thus, a compiler may evaluate 
x*y-x*z 

as x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c. 
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UNIT – V 

Control flow &Data flow Analysis 

 

Flow graph 
 

A graph representation of three-address statements, called a flow graph, is useful for 
understanding code-generation algorithms, even if the graph is not explicitly constructed by a 
code- generation algorithm. Nodes in the flow graph represent computations, and the edges 
represent the flow of control. 

 

Dominators: 

In a flow graph, a node d dominates node n, if every path from initial node of the flow 
graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the 
remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. 
Similarlyeverynode dominates itself. 

 

Example: 

*In the flow graph below, 

*Initial node,node1 dominates every node. *node 2 dominates itself *node 3 dominates all but 1 
and 
2. *node 4 dominates all but 1,2 and 3. 

 
*node 5 and 6 dominates only themselves,since flow of control can skip around either by 
goin through the other. 

*node 7 dominates 7,8 ,9 and 10. *node 8 dominates 8,9 and 10. 

*node 9 and 10 dominates only themselves. 
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 The way of presenting dominator information is in a tree, called the dominator tree in which 
the initial node is the root. 

 

 The parent of each other node is its immediate dominator. 

 Each node d dominates only its descendents in the tree. 

 The existence of dominator tree follows from a property of dominators; each node has a 
unique immediate dominator in that is the last dominator of n on any path from the initial 
node to n. 

 
 In terms of the dom relation, the immediate dominator m has the property is d=!n and d dom 

n, then d dom m. 
 

 
 

 
D(1)={1} 

 

D(2)={1,2} 

 

D(3)={1,3} 

 

D(4)={1,3,4} 

 

D(5)={1,3,4,5} 
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D(6)={1,3,4,6} 

 

D(7)={1,3,4,7} 

 

D(8)={1,3,4,7,8} 

 

D(9)={1,3,4,7,8,9} 

 

D(10)={1,3,4,7,8,10} 

 

Natural Loop: 

 
 One application of dominator information is in determining the loops of a flow graph suitable 

for improvement. 
 

 The properties of loops are 

 
o A loop must have a single entry point, called the header. This entry point-dominates 

all nodes in the loop, or it would not be the sole entry to the loop. 

o There must be at least one wayto iterate the loop(i.e.)at least one path back to the 
header. 

 
 One way to find all the loops in a flow graph is to search for edges in the flow graph whose 

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of 
edges are called as back edges. 

 

Example: 

In the above graph, 

→ 4 4 DOM 7 

→7 7 DOM 10 

→ 3 
 

→ 3  

 
9 →1 

 

 The above edges will form loop in flow graph. 

 Given a back edge n → d, we define the natural loop of the edge to be d plus the set of nodes 
that can reach n without going through d. Node d is the header of the loop. 

 

Algorithm: Constructing the natural loop of a back edge. 

Input: A flow graph G and a back edge n→d 
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Output: The set loop consisting of all nodes in the natural loop n→d. 

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make sure 
that m’s predecessors are also placed in loop. Each node in loop, except for d, is placed once on 
stack, so its predecessors will be examined. Note that because d is put in the loop initially, we never 
examine its predecessors, and thus find only those nodes that reach n without going through d. 

 

Procedure insert(m); 

if m is not in loop then begin loop := loop U {m}; push m onto stack 

end; 

stack : =empty; loop : ={d}; insert(n); 

 

while stack is not empty do begin 

 
pop m, the first element of stack, off stack; for each predecessor p of m do insert(p) 

 

end Inner 

LOOP: 

 If we use the natural loops as “the loops”, then we have the useful property that unless two 
loops have the same header, they are either disjointed or one is entirely contained in the other. 
Thus, neglecting loops with the same header for the moment, we have a natural notion of 
inner loop: one that contains no other loop. 

 
 When two natural loops have the same header, but neither is nested within the other, they are 

combined and treated as a single loop. 

 

Pre-Headers: 

 
 Several transformations require us to move statements “before the header”. Therefore begin 

treatment of a loop L by creating a new block, called the preheater. 

 
 The pre -header has only the header as successor, and all edges which formerly entered the 

header of Lfrom outside L instead enter the pre-header. 

 

 Edges from inside loop L to the header are not changed. 
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 Initially the pre-header is empty, but transformations on L may place statements in it. 

 

(a) Before (b) After 

 

Reducible flow graphs: 

 
 Reducible flow graphs are special flow graphs, for which several code optimization 

transformations are especially easy to perform, loops are unambiguously defined, dominators 
can be easily calculated, data flow analysis problems can also be solved efficiently. 

 

 
 Exclusive use of structured flow-of-control statements such as if-then-else, while-do, 

continue, and break statements produces programs whose flow graphs are always reducible. 
The most important properties of reducible flow graphs are that there are no jumps into the 
middle of loops from outside; the only entry to a loop is through its header. 

 

 Definition: 

 

 A flow graph G is reducible if and only if we can partition the edges into two disjoint groups, 

forward edges and back edges, with the following properties. 

 
 The forward edges from an acyclic graph in which every node can be reached from initial 

node of G. 

 

 The back edges consist only of edges where heads dominate theirs tails. 

 

 Example: The above flow graph is reducible. 

 
 If we know the relation DOM for a flow graph, we can find and remove all the back edges. 

header pre- 

header 

loop L 

header 
 

loop L 
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 The remaining edges are forward edges. 

 

 If the forward edges form an acyclic graph, then we can say the flow graph reducible. 

 
 In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7 whose 

heads dominate their tails, the remaining graph is acyclic. 

 
 The key property of reducible flow graphs for loop analysis is that in such flow graphs every 

set of nodes that we would informally regard as a loop must contain a back edge. 

 
PEEPHOLE OPTIMIZATION 

 
 A statement-by-statement code-generations strategy often produce target code that contains 

redundant instructions and suboptimal constructs .The quality of such target code can be 
improved by applying “optimizing” transformations to the target program. 

 
 A simple but effective technique for improving the target code is peephole optimization, a 

method for trying to improving the performance of the target program by examining a short 
sequence of target instructions (called the peephole) and replacing these instructions by a 
shorter or faster sequence, whenever possible. 

 
 The peephole is a small, moving window on the target program. The code in the peephole 

need not contiguous, although some implementations do require this.it is characteristic of 
peephole optimization that each improvement may spawn opportunities for additional 
improvements. 

 
 We shall give the following examples of program transformations that are characteristic of 

peephole optimizations: 


Redundant-instructions elimination 
 

Flow-of-control optimizations 
 

Algebraic simplifications 
 

Use of machine idioms 
 

Unreachable Code 

 
Redundant Loads And Stores: 

If we see the instructions sequence 

(1) MOV R0,a 

(2) MOV a,R0 

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of a is 
already in register R0.If (2) had a label we could not be sure that (1) was always executed 
immediately before (2) and so we could not remove (2). 
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Unreachable Code: 

 
 Another opportunity for peephole optimizations is the removal of unreachable instructions. 

An unlabeled instruction immediately following an unconditional jump may be removed. This 
operation can be repeated to eliminate a sequence of instructions. For example, for debugging 
purposes, a large program may have within it certain segments that are executed only if a 
variable debug is 1. In C, the source code might look like: 

 

#define debug 

0 …. 

If ( debug ) { 

 

Print debugging information 

 
} 

 
 

In the intermediate representations the if-statement may be translated as: 

debug =1 goto L2 

goto L2 

 

L1: print debugging information 

L2: ....................................... (a) 

 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what 
the value of debug; (a) can be replaced by: 

 

If debug ≠1 goto L2 

 

Print debugging information 

L2: ........................................... (b) 

 As the argument of the statement of (b) evaluates to a constant true it can be replaced by 
If debug ≠0 goto L2 

 

Print debugging information 

 

L2: ..........................................................................................(c) 
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 As the argument of the first statement of (c) evaluates to a constant true, it can be 
replaced by goto L2. Then all the statement that print debugging aids are manifestly 

 

 
unreachable and can be eliminated one at a time. 

 

Flows-Of-Control Optimizations: 

 
 The unnecessary jumps can be eliminated in either the intermediate code or the target 

code by the following types of peephole optimizations. We can replace the jump 
sequence 

 

goto L1 

…. 

L1: gotoL2 by the 
sequence goto L2 

…. 
L1: goto L2 

 
 If there are now no jumps to L1, then it may be possible to eliminate the statement 

L1:goto L2 provided it is preceded by an unconditional jump .Similarly, thesequence 
 

if a < b goto L1 

…. 

L1: goto L2 

can be replaced by Ifa < b goto L2 

…. 

L1: goto L2 

 

 Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional 
goto. 

Then the sequence 

goto L1 

…….. 
L1: if a <b goto L2 

L3:……………………………… 

…..(1) 

 
 Maybe replaced by Ifa<b goto L2 

goto L3 

……. 
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t0 = a + b 

t1 = t0 + c 

d = t0 + t1 

OBJECT CODE GENERATION: 

 

code generation is the process by which a compiler's code generator converts some intermediate 

representation of source code into a form (e.g., machine code) that can be readily executed by a machine. 

 

Code generation can be considered as the final phase of compilation. Through post code generation, 

optimization process can be applied on the code, but that can be seen as a part of code generation phase 

itself. The code generated by the compiler is an object code of some lower-level programming language, 

for example, assembly language. We have seen that the source code written in a higher-level language is 

transformed into a lower-level language that results in a lower-level object code, which should have the 

following minimum properties: 

 

 It should carry the exact meaning of the source code. 

 It should be efficient in terms of CPU usage and memory management. 

We will now see how the intermediate code is transformed into target object code (assembly code, in this 

case). 

Directed Acyclic Graph 

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps to see the flow of 

values flowing among the basic blocks, and offers optimization too. DAG provides easy transformation 

on basic blocks. DAG can be understood here: 

 Leaf nodes represent identifiers, names or constants. 
 

 Interior nodes represent operators. 
 

 Interior nodes also represent the results of expressions or the identifiers/name where the values are 

to be stored or assigned. 

Example: 
 

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
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[t0 = a + b] 

 

 

[t1 = t0 + c] 

 

 

[d = t0 + t1] 

 

REGISTER ALLOCATION: 

 
Register allocation In the IR, we assumed an unlimited number of registers (to ease IR code 

generation) This is obviously not the case on a physical machine (typically, from 5 to 10 general- 

purpose registers) Registers can be accessed quickly and operations can be performed on them 

directly Using registers intelligently is therefore a critical step in any compiler (can make a di↵erence 

in orders of magnitude) Register allocation is the process of assigning variables to registers and 

managing data transfer in and out of the registers 

 
GENERIC CODE GENERATION ALGORITHM: 

 
Assume that for each operator in the statement, there is a corresponding target language operator 

The computed results can be left in registers as long as possible, storing them only if the register is 

needed for another computation or just before a procedure call, jump or labeled statement 

Register and Address Descriptors 

These are the primary data structures used by the code generator. They keep track of what values are 
in each registers, as well as where a given value resides 

 Each register has a register descriptor containing the list of variables currently stored in this 

register. At the start of the basic block, all register descriptors are empty. It keeps track of 

recent/current variable in each register. It is constructed whenever a new register is needed 

 Each variable has an address descriptor containing the list of locations where this variable is 

currently stored. Possibilities are its memory location and one or more registers 

 The memory location might be in the static area, the stack, r presumably the heap. The register 

descriptors can be computed from the address descriptors. For each name of the block, an address 

descriptors is maintained that keep track of location where current value of name is found at 

runtime 

There are basically three aspects to be considered in code generation: 

Choosing registers 

Generating instructions 

Managing descriptors 

Register allocation is done in a function getReg(Instruction). The instruction generation algorithms 
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uses getReg() and the descriptors 

The generation of machine instruction is done as follows: 

Given a TAC, OP x, Y(i.e., x=x OP y), generation of machine instructions proceeds as 

follows: 

Step 1: Call getReg(OP, x, y) to get Rx and Ry, the registers to be used for x and y respectively. 

GetReg merely selects the registers, it does not gurantee that the desired values are present in these 

registers. 

Step 2: Check the register descriptor for Ry. If y is not present in Ry, check the address descriptor for 

y and issue LD Ry, y 
Step 3: Similar treatment is done for Rx 

Step 4: Generate the instruction OP Rx, Ry 

When the TAC is x = y, step 1 and step 2 are same (getReg() will set Rx =Ry). Step 3 is empty and 

step 4 is omitted. If ‘y’ was already in a register before the copy instruction, no code is generated at 

this point. Since the value of ‘y’ is not in its memory location, we may need to store this value back 

into ‘y’ at block exit. 

All variables needed by (dynamically) subsequent blocks (i.e., that live-on-exit) have their current 

values in their memory locations. Such live variables are identified as follows: 

 Temporaries never live beyond a basic block. Hence, they are ignored 

 Variables dead on exit are also ignored 

 All live on exit variables need to be stored in their memory location on exit from the block. So, 

check the address descriptor for each live on exit variable. If its own memory location is not listed, 

generate ST X, R, where R is a register listed in the address descriptor 

The management of register and address descriptor is performed as follows: 

 For a register R, let Desc(R) be is register descriptor. For a program variable x, let Desc(x) be its 

address descriptor. The management of descriptor for load, store, operation and copy are given 

below 

Load: LD R, x 

Desc(R) = x(removing everything else from Desc(R)) 

Add R to Desc(x) (leaving alone everything else in Desc(x)) 

Remove R from Desc(w) for all w ≠ x 

Store: ST x, R 

Add the memory location of x to Desc(x) 

Operation: OP Rx, Ry implementing the quas OP x, y 

Desc(Rx) = x 

Desc(x) = Rx 

After operation Rx has Rx OP Ry 

Copy: for x = y after processing the load 

Add x to Desc(Ry) (note y not x) 

Desc(x) = Ry 

Minimize the number of registers used: 

 When a register holds a temporary value and there are no subsequent uses for this value, we reuse 

that register 

 When a register holds the value of a program variable and there are no subsequent uses of this 
value, we reuse that register providing this value also in the memory location for the variable 

 When a register holds the values of a program variable and all subsequent uses of this value are 

preceded by a redefinition, we could reuse this register. But to know about all subsequent uses, one 
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may require live/dead-on-exit knowledge 

Assume a, b, c and d are program variables and t, u, v are compiler generated temporaries. These are 

represented as t1,t1,t2 and t$3. The code generated for different TACs is given below: 

t = a –b 

 

 
 

U = a – c 

 

 
 

v = t + u 

a = d 

 
d = v + u 

 
 

Exit 

LD R1, a 

LD R2, b 

SUB R1, R2 

 
LD R3, a 

LD R2, c 

SUB R3, R2 

ADD R1, R3 

LD R2, d 

ST a, R2 

 
ADD R1, R3 

ST d, R1 

DAG for Register Allocation: 

 
Code generation from DAG is much simpler than the linear sequence of three address code 

With the help of DAG one can rearrange sequence of instructions and generate and efficient code 

There exist various algorithms which are used for generating code from DAG. They are: 

Code Generation from DAG:- 

Rearranging Order 

Heuristic Ordering 

Labeling Algorithm 

Rearranging Order 

These address code’s order affects the cost of the object code which is being generated 

Object code with minimum cost can be achieved by changing the order of computations 

Example: 

t1:= a + b 

t2:= c – d 

t3:= e + t2 

t4:= t1 + t3 

For the expression (a+b) + (e+(c-d)), a DAG can be constructed for the above sequence as shown 

below 
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The code is thus generated by translating the three address code line by line 

MOV a, R0 

ADD b, R0 

MOV c, R1 

SUB d, R1 

MOV R0, t t1:= a+b 

MOV e, R0 R1 has c-d 

ADD R0, R1  /* R1 contains e + (c – d)*/ 

MOV t1, R0 /R0 contains a + b*/ 

ADD R1, R0 

MOV R0, t4 

Now, if the ordering sequence of the three address code is changed 

t2:= c - d 

t3:= e + t2 

t1:= a + b 

t4:= t1 + t3 

Then, an improved code is obtained as: 

MOV c, R0 

SUB D, R0 

MOV e, R1 

ADD R0, R1 

MOV a, R0 

ADD b, R0 

ADD R1, R0 

MOV R0, t4 

Heuristic Ordering 

The algorithm displayed below is for heuristic ordering. It lists the nodes of a DAG such that the 

node’s reverse listing results in the computation order. 


